Metamath Proof Explorer


Theorem smupf

Description: The sequence of partial sums of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016)

Ref Expression
Hypotheses smuval.a φ A 0
smuval.b φ B 0
smuval.p P = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1
Assertion smupf φ P : 0 𝒫 0

Proof

Step Hyp Ref Expression
1 smuval.a φ A 0
2 smuval.b φ B 0
3 smuval.p P = seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1
4 0nn0 0 0
5 iftrue n = 0 if n = 0 n 1 =
6 eqid n 0 if n = 0 n 1 = n 0 if n = 0 n 1
7 0ex V
8 5 6 7 fvmpt 0 0 n 0 if n = 0 n 1 0 =
9 4 8 mp1i φ n 0 if n = 0 n 1 0 =
10 0elpw 𝒫 0
11 9 10 eqeltrdi φ n 0 if n = 0 n 1 0 𝒫 0
12 df-ov x p 𝒫 0 , m 0 p sadd n 0 | m A n m B y = p 𝒫 0 , m 0 p sadd n 0 | m A n m B x y
13 elpwi p 𝒫 0 p 0
14 13 adantr p 𝒫 0 m 0 p 0
15 ssrab2 n 0 | m A n m B 0
16 sadcl p 0 n 0 | m A n m B 0 p sadd n 0 | m A n m B 0
17 14 15 16 sylancl p 𝒫 0 m 0 p sadd n 0 | m A n m B 0
18 nn0ex 0 V
19 18 elpw2 p sadd n 0 | m A n m B 𝒫 0 p sadd n 0 | m A n m B 0
20 17 19 sylibr p 𝒫 0 m 0 p sadd n 0 | m A n m B 𝒫 0
21 20 rgen2 p 𝒫 0 m 0 p sadd n 0 | m A n m B 𝒫 0
22 eqid p 𝒫 0 , m 0 p sadd n 0 | m A n m B = p 𝒫 0 , m 0 p sadd n 0 | m A n m B
23 22 fmpo p 𝒫 0 m 0 p sadd n 0 | m A n m B 𝒫 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B : 𝒫 0 × 0 𝒫 0
24 21 23 mpbi p 𝒫 0 , m 0 p sadd n 0 | m A n m B : 𝒫 0 × 0 𝒫 0
25 24 10 f0cli p 𝒫 0 , m 0 p sadd n 0 | m A n m B x y 𝒫 0
26 12 25 eqeltri x p 𝒫 0 , m 0 p sadd n 0 | m A n m B y 𝒫 0
27 26 a1i φ x 𝒫 0 y V x p 𝒫 0 , m 0 p sadd n 0 | m A n m B y 𝒫 0
28 nn0uz 0 = 0
29 0zd φ 0
30 fvexd φ x 0 + 1 n 0 if n = 0 n 1 x V
31 11 27 28 29 30 seqf2 φ seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 : 0 𝒫 0
32 3 feq1i P : 0 𝒫 0 seq 0 p 𝒫 0 , m 0 p sadd n 0 | m A n m B n 0 if n = 0 n 1 : 0 𝒫 0
33 31 32 sylibr φ P : 0 𝒫 0