Metamath Proof Explorer


Theorem smupf

Description: The sequence of partial sums of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016)

Ref Expression
Hypotheses smuval.a φA0
smuval.b φB0
smuval.p P=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1
Assertion smupf φP:0𝒫0

Proof

Step Hyp Ref Expression
1 smuval.a φA0
2 smuval.b φB0
3 smuval.p P=seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1
4 0nn0 00
5 iftrue n=0ifn=0n1=
6 eqid n0ifn=0n1=n0ifn=0n1
7 0ex V
8 5 6 7 fvmpt 00n0ifn=0n10=
9 4 8 mp1i φn0ifn=0n10=
10 0elpw 𝒫0
11 9 10 eqeltrdi φn0ifn=0n10𝒫0
12 df-ov xp𝒫0,m0psaddn0|mAnmBy=p𝒫0,m0psaddn0|mAnmBxy
13 elpwi p𝒫0p0
14 13 adantr p𝒫0m0p0
15 ssrab2 n0|mAnmB0
16 sadcl p0n0|mAnmB0psaddn0|mAnmB0
17 14 15 16 sylancl p𝒫0m0psaddn0|mAnmB0
18 nn0ex 0V
19 18 elpw2 psaddn0|mAnmB𝒫0psaddn0|mAnmB0
20 17 19 sylibr p𝒫0m0psaddn0|mAnmB𝒫0
21 20 rgen2 p𝒫0m0psaddn0|mAnmB𝒫0
22 eqid p𝒫0,m0psaddn0|mAnmB=p𝒫0,m0psaddn0|mAnmB
23 22 fmpo p𝒫0m0psaddn0|mAnmB𝒫0p𝒫0,m0psaddn0|mAnmB:𝒫0×0𝒫0
24 21 23 mpbi p𝒫0,m0psaddn0|mAnmB:𝒫0×0𝒫0
25 24 10 f0cli p𝒫0,m0psaddn0|mAnmBxy𝒫0
26 12 25 eqeltri xp𝒫0,m0psaddn0|mAnmBy𝒫0
27 26 a1i φx𝒫0yVxp𝒫0,m0psaddn0|mAnmBy𝒫0
28 nn0uz 0=0
29 0zd φ0
30 fvexd φx0+1n0ifn=0n1xV
31 11 27 28 29 30 seqf2 φseq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1:0𝒫0
32 3 feq1i P:0𝒫0seq0p𝒫0,m0psaddn0|mAnmBn0ifn=0n1:0𝒫0
33 31 32 sylibr φP:0𝒫0