Metamath Proof Explorer


Theorem soex

Description: If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015)

Ref Expression
Assertion soex ROrARVAV

Proof

Step Hyp Ref Expression
1 simpr ROrARVA=A=
2 0ex V
3 1 2 eqeltrdi ROrARVA=AV
4 n0 AxxA
5 vsnex xV
6 dmexg RVdomRV
7 rnexg RVranRV
8 unexg domRVranRVdomRranRV
9 6 7 8 syl2anc RVdomRranRV
10 unexg xVdomRranRVxdomRranRV
11 5 9 10 sylancr RVxdomRranRV
12 11 ad2antlr ROrARVxAxdomRranRV
13 sossfld ROrAxAAxdomRranR
14 13 adantlr ROrARVxAAxdomRranR
15 ssundif AxdomRranRAxdomRranR
16 14 15 sylibr ROrARVxAAxdomRranR
17 12 16 ssexd ROrARVxAAV
18 17 ex ROrARVxAAV
19 18 exlimdv ROrARVxxAAV
20 19 imp ROrARVxxAAV
21 4 20 sylan2b ROrARVAAV
22 3 21 pm2.61dane ROrARVAV