Description: If the relation in a strict order is a set, then the base field is also a set. (Contributed by Mario Carneiro, 27-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | soex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | 0ex | |
|
3 | 1 2 | eqeltrdi | |
4 | n0 | |
|
5 | vsnex | |
|
6 | dmexg | |
|
7 | rnexg | |
|
8 | unexg | |
|
9 | 6 7 8 | syl2anc | |
10 | unexg | |
|
11 | 5 9 10 | sylancr | |
12 | 11 | ad2antlr | |
13 | sossfld | |
|
14 | 13 | adantlr | |
15 | ssundif | |
|
16 | 14 15 | sylibr | |
17 | 12 16 | ssexd | |
18 | 17 | ex | |
19 | 18 | exlimdv | |
20 | 19 | imp | |
21 | 4 20 | sylan2b | |
22 | 3 21 | pm2.61dane | |