Description: The base set of a nonempty strict order is the same as the field of the relation. (Contributed by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | sofld | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relxp | |
|
2 | relss | |
|
3 | 1 2 | mpi | |
4 | 3 | ad2antlr | |
5 | df-br | |
|
6 | ssun1 | |
|
7 | undif1 | |
|
8 | 6 7 | sseqtrri | |
9 | simpll | |
|
10 | dmss | |
|
11 | dmxpid | |
|
12 | 10 11 | sseqtrdi | |
13 | 12 | ad2antlr | |
14 | 3 | ad2antlr | |
15 | releldm | |
|
16 | 14 15 | sylancom | |
17 | 13 16 | sseldd | |
18 | sossfld | |
|
19 | 9 17 18 | syl2anc | |
20 | ssun1 | |
|
21 | 20 16 | sselid | |
22 | 21 | snssd | |
23 | 19 22 | unssd | |
24 | 8 23 | sstrid | |
25 | 24 | ex | |
26 | 5 25 | biimtrrid | |
27 | 26 | con3dimp | |
28 | 27 | pm2.21d | |
29 | 4 28 | relssdv | |
30 | ss0 | |
|
31 | 29 30 | syl | |
32 | 31 | ex | |
33 | 32 | necon1ad | |
34 | 33 | 3impia | |
35 | rnss | |
|
36 | rnxpid | |
|
37 | 35 36 | sseqtrdi | |
38 | 12 37 | unssd | |
39 | 38 | 3ad2ant2 | |
40 | 34 39 | eqssd | |