Metamath Proof Explorer


Theorem sofld

Description: The base set of a nonempty strict order is the same as the field of the relation. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion sofld ROrARA×ARA=domRranR

Proof

Step Hyp Ref Expression
1 relxp RelA×A
2 relss RA×ARelA×ARelR
3 1 2 mpi RA×ARelR
4 3 ad2antlr ROrARA×A¬AdomRranRRelR
5 df-br xRyxyR
6 ssun1 AAx
7 undif1 Axx=Ax
8 6 7 sseqtrri AAxx
9 simpll ROrARA×AxRyROrA
10 dmss RA×AdomRdomA×A
11 dmxpid domA×A=A
12 10 11 sseqtrdi RA×AdomRA
13 12 ad2antlr ROrARA×AxRydomRA
14 3 ad2antlr ROrARA×AxRyRelR
15 releldm RelRxRyxdomR
16 14 15 sylancom ROrARA×AxRyxdomR
17 13 16 sseldd ROrARA×AxRyxA
18 sossfld ROrAxAAxdomRranR
19 9 17 18 syl2anc ROrARA×AxRyAxdomRranR
20 ssun1 domRdomRranR
21 20 16 sselid ROrARA×AxRyxdomRranR
22 21 snssd ROrARA×AxRyxdomRranR
23 19 22 unssd ROrARA×AxRyAxxdomRranR
24 8 23 sstrid ROrARA×AxRyAdomRranR
25 24 ex ROrARA×AxRyAdomRranR
26 5 25 biimtrrid ROrARA×AxyRAdomRranR
27 26 con3dimp ROrARA×A¬AdomRranR¬xyR
28 27 pm2.21d ROrARA×A¬AdomRranRxyRxy
29 4 28 relssdv ROrARA×A¬AdomRranRR
30 ss0 RR=
31 29 30 syl ROrARA×A¬AdomRranRR=
32 31 ex ROrARA×A¬AdomRranRR=
33 32 necon1ad ROrARA×ARAdomRranR
34 33 3impia ROrARA×ARAdomRranR
35 rnss RA×AranRranA×A
36 rnxpid ranA×A=A
37 35 36 sseqtrdi RA×AranRA
38 12 37 unssd RA×AdomRranRA
39 38 3ad2ant2 ROrARA×ARdomRranRA
40 34 39 eqssd ROrARA×ARA=domRranR