Metamath Proof Explorer


Theorem splfv3

Description: Symbols to the right of a splice are unaffected. (Contributed by Thierry Arnoux, 14-Dec-2023)

Ref Expression
Hypotheses splfv3.s φSWordA
splfv3.f φF0T
splfv3.t φT0S
splfv3.r φRWordA
splfv3.x φX0..^ST
splfv3.k φK=F+R
Assertion splfv3 φSspliceFTRX+K=SX+T

Proof

Step Hyp Ref Expression
1 splfv3.s φSWordA
2 splfv3.f φF0T
3 splfv3.t φT0S
4 splfv3.r φRWordA
5 splfv3.x φX0..^ST
6 splfv3.k φK=F+R
7 splval SWordAF0TT0SRWordASspliceFTR=SprefixF++R++SsubstrTS
8 1 2 3 4 7 syl13anc φSspliceFTR=SprefixF++R++SsubstrTS
9 elfzuz3 T0SST
10 fzss2 ST0T0S
11 3 9 10 3syl φ0T0S
12 11 2 sseldd φF0S
13 pfxlen SWordAF0SSprefixF=F
14 1 12 13 syl2anc φSprefixF=F
15 14 oveq1d φSprefixF+R=F+R
16 pfxcl SWordASprefixFWordA
17 1 16 syl φSprefixFWordA
18 ccatlen SprefixFWordARWordASprefixF++R=SprefixF+R
19 17 4 18 syl2anc φSprefixF++R=SprefixF+R
20 15 19 6 3eqtr4rd φK=SprefixF++R
21 20 oveq2d φX+K=X+SprefixF++R
22 8 21 fveq12d φSspliceFTRX+K=SprefixF++R++SsubstrTSX+SprefixF++R
23 ccatcl SprefixFWordARWordASprefixF++RWordA
24 17 4 23 syl2anc φSprefixF++RWordA
25 swrdcl SWordASsubstrTSWordA
26 1 25 syl φSsubstrTSWordA
27 lencl SWordAS0
28 nn0fz0 S0S0S
29 27 28 sylib SWordAS0S
30 1 29 syl φS0S
31 swrdlen SWordAT0SS0SSsubstrTS=ST
32 1 3 30 31 syl3anc φSsubstrTS=ST
33 32 oveq2d φ0..^SsubstrTS=0..^ST
34 5 33 eleqtrrd φX0..^SsubstrTS
35 ccatval3 SprefixF++RWordASsubstrTSWordAX0..^SsubstrTSSprefixF++R++SsubstrTSX+SprefixF++R=SsubstrTSX
36 24 26 34 35 syl3anc φSprefixF++R++SsubstrTSX+SprefixF++R=SsubstrTSX
37 swrdfv SWordAT0SS0SX0..^STSsubstrTSX=SX+T
38 1 3 30 5 37 syl31anc φSsubstrTSX=SX+T
39 22 36 38 3eqtrd φSspliceFTRX+K=SX+T