Metamath Proof Explorer


Theorem spthonepeq

Description: The endpoints of a simple path between two vertices are equal iff the path is of length 0. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 18-Jan-2021) (Proof shortened by AV, 31-Oct-2021)

Ref Expression
Assertion spthonepeq FASPathsOnGBPA=BF=0

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 1 spthonprop FASPathsOnGBPGVAVtxGBVtxGFVPVFATrailsOnGBPFSPathsGP
3 1 istrlson AVtxGBVtxGFVPVFATrailsOnGBPFAWalksOnGBPFTrailsGP
4 3 3adantl1 GVAVtxGBVtxGFVPVFATrailsOnGBPFAWalksOnGBPFTrailsGP
5 isspth FSPathsGPFTrailsGPFunP-1
6 5 a1i GVAVtxGBVtxGFVPVFSPathsGPFTrailsGPFunP-1
7 4 6 anbi12d GVAVtxGBVtxGFVPVFATrailsOnGBPFSPathsGPFAWalksOnGBPFTrailsGPFTrailsGPFunP-1
8 1 wlkonprop FAWalksOnGBPGVAVtxGBVtxGFVPVFWalksGPP0=APF=B
9 wlkcl FWalksGPF0
10 1 wlkp FWalksGPP:0FVtxG
11 df-f1 P:0F1-1VtxGP:0FVtxGFunP-1
12 eqeq2 A=BP0=AP0=B
13 eqtr3 PF=BP0=BPF=P0
14 elnn0uz F0F0
15 eluzfz2 F0F0F
16 14 15 sylbi F0F0F
17 0elfz F000F
18 16 17 jca F0F0F00F
19 f1veqaeq P:0F1-1VtxGF0F00FPF=P0F=0
20 18 19 sylan2 P:0F1-1VtxGF0PF=P0F=0
21 20 ex P:0F1-1VtxGF0PF=P0F=0
22 21 com13 PF=P0F0P:0F1-1VtxGF=0
23 13 22 syl PF=BP0=BF0P:0F1-1VtxGF=0
24 23 expcom P0=BPF=BF0P:0F1-1VtxGF=0
25 12 24 syl6bi A=BP0=APF=BF0P:0F1-1VtxGF=0
26 25 com15 P:0F1-1VtxGP0=APF=BF0A=BF=0
27 11 26 sylbir P:0FVtxGFunP-1P0=APF=BF0A=BF=0
28 27 expcom FunP-1P:0FVtxGP0=APF=BF0A=BF=0
29 28 com15 F0P:0FVtxGP0=APF=BFunP-1A=BF=0
30 9 10 29 sylc FWalksGPP0=APF=BFunP-1A=BF=0
31 30 3imp1 FWalksGPP0=APF=BFunP-1A=BF=0
32 fveqeq2 F=0PF=BP0=B
33 32 anbi2d F=0P0=APF=BP0=AP0=B
34 eqtr2 P0=AP0=BA=B
35 33 34 syl6bi F=0P0=APF=BA=B
36 35 com12 P0=APF=BF=0A=B
37 36 3adant1 FWalksGPP0=APF=BF=0A=B
38 37 adantr FWalksGPP0=APF=BFunP-1F=0A=B
39 31 38 impbid FWalksGPP0=APF=BFunP-1A=BF=0
40 39 ex FWalksGPP0=APF=BFunP-1A=BF=0
41 40 3ad2ant3 GVAVtxGBVtxGFVPVFWalksGPP0=APF=BFunP-1A=BF=0
42 8 41 syl FAWalksOnGBPFunP-1A=BF=0
43 42 adantld FAWalksOnGBPFTrailsGPFunP-1A=BF=0
44 43 adantr FAWalksOnGBPFTrailsGPFTrailsGPFunP-1A=BF=0
45 44 imp FAWalksOnGBPFTrailsGPFTrailsGPFunP-1A=BF=0
46 7 45 syl6bi GVAVtxGBVtxGFVPVFATrailsOnGBPFSPathsGPA=BF=0
47 46 3impia GVAVtxGBVtxGFVPVFATrailsOnGBPFSPathsGPA=BF=0
48 2 47 syl FASPathsOnGBPA=BF=0