Description: The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof shortened by AV, 12-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | srapart.a | |
|
srapart.s | |
||
Assertion | sravsca | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srapart.a | |
|
2 | srapart.s | |
|
3 | ovex | |
|
4 | fvex | |
|
5 | vscaid | |
|
6 | 5 | setsid | |
7 | 3 4 6 | mp2an | |
8 | slotsdifipndx | |
|
9 | 8 | simpli | |
10 | 5 9 | setsnid | |
11 | 7 10 | eqtri | |
12 | 1 | adantl | |
13 | sraval | |
|
14 | 2 13 | sylan2 | |
15 | 12 14 | eqtrd | |
16 | 15 | fveq2d | |
17 | 11 16 | eqtr4id | |
18 | 5 | str0 | |
19 | fvprc | |
|
20 | 19 | adantr | |
21 | fv2prc | |
|
22 | 1 21 | sylan9eqr | |
23 | 22 | fveq2d | |
24 | 18 20 23 | 3eqtr4a | |
25 | 17 24 | pm2.61ian | |