Metamath Proof Explorer


Theorem sravsca

Description: The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Proof shortened by AV, 12-Nov-2024)

Ref Expression
Hypotheses srapart.a φA=subringAlgWS
srapart.s φSBaseW
Assertion sravsca φW=A

Proof

Step Hyp Ref Expression
1 srapart.a φA=subringAlgWS
2 srapart.s φSBaseW
3 ovex WsSetScalarndxW𝑠SV
4 fvex WV
5 vscaid 𝑠=Slotndx
6 5 setsid WsSetScalarndxW𝑠SVWVW=WsSetScalarndxW𝑠SsSetndxW
7 3 4 6 mp2an W=WsSetScalarndxW𝑠SsSetndxW
8 slotsdifipndx ndx𝑖ndxScalarndx𝑖ndx
9 8 simpli ndx𝑖ndx
10 5 9 setsnid WsSetScalarndxW𝑠SsSetndxW=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
11 7 10 eqtri W=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
12 1 adantl WVφA=subringAlgWS
13 sraval WVSBaseWsubringAlgWS=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
14 2 13 sylan2 WVφsubringAlgWS=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
15 12 14 eqtrd WVφA=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
16 15 fveq2d WVφA=WsSetScalarndxW𝑠SsSetndxWsSet𝑖ndxW
17 11 16 eqtr4id WVφW=A
18 5 str0 =
19 fvprc ¬WVW=
20 19 adantr ¬WVφW=
21 fv2prc ¬WVsubringAlgWS=
22 1 21 sylan9eqr ¬WVφA=
23 22 fveq2d ¬WVφA=
24 18 20 23 3eqtr4a ¬WVφW=A
25 17 24 pm2.61ian φW=A