Metamath Proof Explorer


Theorem srgpcompp

Description: If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019)

Ref Expression
Hypotheses srgpcomp.s S=BaseR
srgpcomp.m ×˙=R
srgpcomp.g G=mulGrpR
srgpcomp.e ×˙=G
srgpcomp.r φRSRing
srgpcomp.a φAS
srgpcomp.b φBS
srgpcomp.k φK0
srgpcomp.c φA×˙B=B×˙A
srgpcompp.n φN0
Assertion srgpcompp φN×˙A×˙K×˙B×˙A=N+1×˙A×˙K×˙B

Proof

Step Hyp Ref Expression
1 srgpcomp.s S=BaseR
2 srgpcomp.m ×˙=R
3 srgpcomp.g G=mulGrpR
4 srgpcomp.e ×˙=G
5 srgpcomp.r φRSRing
6 srgpcomp.a φAS
7 srgpcomp.b φBS
8 srgpcomp.k φK0
9 srgpcomp.c φA×˙B=B×˙A
10 srgpcompp.n φN0
11 3 1 mgpbas S=BaseG
12 3 srgmgp RSRingGMnd
13 5 12 syl φGMnd
14 11 4 13 10 6 mulgnn0cld φN×˙AS
15 11 4 13 8 7 mulgnn0cld φK×˙BS
16 1 2 srgass RSRingN×˙ASK×˙BSASN×˙A×˙K×˙B×˙A=N×˙A×˙K×˙B×˙A
17 5 14 15 6 16 syl13anc φN×˙A×˙K×˙B×˙A=N×˙A×˙K×˙B×˙A
18 1 2 3 4 5 6 7 8 9 srgpcomp φK×˙B×˙A=A×˙K×˙B
19 18 oveq2d φN×˙A×˙K×˙B×˙A=N×˙A×˙A×˙K×˙B
20 1 2 srgass RSRingN×˙ASASK×˙BSN×˙A×˙A×˙K×˙B=N×˙A×˙A×˙K×˙B
21 5 14 6 15 20 syl13anc φN×˙A×˙A×˙K×˙B=N×˙A×˙A×˙K×˙B
22 19 21 eqtr4d φN×˙A×˙K×˙B×˙A=N×˙A×˙A×˙K×˙B
23 3 2 mgpplusg ×˙=+G
24 11 4 23 mulgnn0p1 GMndN0ASN+1×˙A=N×˙A×˙A
25 13 10 6 24 syl3anc φN+1×˙A=N×˙A×˙A
26 25 eqcomd φN×˙A×˙A=N+1×˙A
27 26 oveq1d φN×˙A×˙A×˙K×˙B=N+1×˙A×˙K×˙B
28 17 22 27 3eqtrd φN×˙A×˙K×˙B×˙A=N+1×˙A×˙K×˙B