Description: A subset of a compact topology (i.e. a coarser topology) is compact. (Contributed by Mario Carneiro, 20-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sscmp.1 | |
|
Assertion | sscmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sscmp.1 | |
|
2 | topontop | |
|
3 | 2 | 3ad2ant1 | |
4 | elpwi | |
|
5 | simpl2 | |
|
6 | simprl | |
|
7 | simpl3 | |
|
8 | 6 7 | sstrd | |
9 | simpl1 | |
|
10 | toponuni | |
|
11 | 9 10 | syl | |
12 | simprr | |
|
13 | 11 12 | eqtrd | |
14 | 1 | cmpcov | |
15 | 5 8 13 14 | syl3anc | |
16 | 11 | eqeq1d | |
17 | 16 | rexbidv | |
18 | 15 17 | mpbid | |
19 | 18 | expr | |
20 | 4 19 | sylan2 | |
21 | 20 | ralrimiva | |
22 | eqid | |
|
23 | 22 | iscmp | |
24 | 3 21 23 | sylanbrc | |