Metamath Proof Explorer


Theorem sscmp

Description: A subset of a compact topology (i.e. a coarser topology) is compact. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Hypothesis sscmp.1 X = K
Assertion sscmp J TopOn X K Comp J K J Comp

Proof

Step Hyp Ref Expression
1 sscmp.1 X = K
2 topontop J TopOn X J Top
3 2 3ad2ant1 J TopOn X K Comp J K J Top
4 elpwi x 𝒫 J x J
5 simpl2 J TopOn X K Comp J K x J J = x K Comp
6 simprl J TopOn X K Comp J K x J J = x x J
7 simpl3 J TopOn X K Comp J K x J J = x J K
8 6 7 sstrd J TopOn X K Comp J K x J J = x x K
9 simpl1 J TopOn X K Comp J K x J J = x J TopOn X
10 toponuni J TopOn X X = J
11 9 10 syl J TopOn X K Comp J K x J J = x X = J
12 simprr J TopOn X K Comp J K x J J = x J = x
13 11 12 eqtrd J TopOn X K Comp J K x J J = x X = x
14 1 cmpcov K Comp x K X = x y 𝒫 x Fin X = y
15 5 8 13 14 syl3anc J TopOn X K Comp J K x J J = x y 𝒫 x Fin X = y
16 11 eqeq1d J TopOn X K Comp J K x J J = x X = y J = y
17 16 rexbidv J TopOn X K Comp J K x J J = x y 𝒫 x Fin X = y y 𝒫 x Fin J = y
18 15 17 mpbid J TopOn X K Comp J K x J J = x y 𝒫 x Fin J = y
19 18 expr J TopOn X K Comp J K x J J = x y 𝒫 x Fin J = y
20 4 19 sylan2 J TopOn X K Comp J K x 𝒫 J J = x y 𝒫 x Fin J = y
21 20 ralrimiva J TopOn X K Comp J K x 𝒫 J J = x y 𝒫 x Fin J = y
22 eqid J = J
23 22 iscmp J Comp J Top x 𝒫 J J = x y 𝒫 x Fin J = y
24 3 21 23 sylanbrc J TopOn X K Comp J K J Comp