Metamath Proof Explorer


Theorem sscmp

Description: A subset of a compact topology (i.e. a coarser topology) is compact. (Contributed by Mario Carneiro, 20-Mar-2015)

Ref Expression
Hypothesis sscmp.1 X=K
Assertion sscmp JTopOnXKCompJKJComp

Proof

Step Hyp Ref Expression
1 sscmp.1 X=K
2 topontop JTopOnXJTop
3 2 3ad2ant1 JTopOnXKCompJKJTop
4 elpwi x𝒫JxJ
5 simpl2 JTopOnXKCompJKxJJ=xKComp
6 simprl JTopOnXKCompJKxJJ=xxJ
7 simpl3 JTopOnXKCompJKxJJ=xJK
8 6 7 sstrd JTopOnXKCompJKxJJ=xxK
9 simpl1 JTopOnXKCompJKxJJ=xJTopOnX
10 toponuni JTopOnXX=J
11 9 10 syl JTopOnXKCompJKxJJ=xX=J
12 simprr JTopOnXKCompJKxJJ=xJ=x
13 11 12 eqtrd JTopOnXKCompJKxJJ=xX=x
14 1 cmpcov KCompxKX=xy𝒫xFinX=y
15 5 8 13 14 syl3anc JTopOnXKCompJKxJJ=xy𝒫xFinX=y
16 11 eqeq1d JTopOnXKCompJKxJJ=xX=yJ=y
17 16 rexbidv JTopOnXKCompJKxJJ=xy𝒫xFinX=yy𝒫xFinJ=y
18 15 17 mpbid JTopOnXKCompJKxJJ=xy𝒫xFinJ=y
19 18 expr JTopOnXKCompJKxJJ=xy𝒫xFinJ=y
20 4 19 sylan2 JTopOnXKCompJKx𝒫JJ=xy𝒫xFinJ=y
21 20 ralrimiva JTopOnXKCompJKx𝒫JJ=xy𝒫xFinJ=y
22 eqid J=J
23 22 iscmp JCompJTopx𝒫JJ=xy𝒫xFinJ=y
24 3 21 23 sylanbrc JTopOnXKCompJKJComp