Metamath Proof Explorer


Theorem ssctr

Description: The subcategory subset relation is transitive. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion ssctr AcatBBcatCAcatC

Proof

Step Hyp Ref Expression
1 simpl AcatBBcatCAcatB
2 eqidd AcatBBcatCdomdomA=domdomA
3 1 2 sscfn1 AcatBBcatCAFndomdomA×domdomA
4 eqidd AcatBBcatCdomdomB=domdomB
5 1 4 sscfn2 AcatBBcatCBFndomdomB×domdomB
6 3 5 1 ssc1 AcatBBcatCdomdomAdomdomB
7 simpr AcatBBcatCBcatC
8 eqidd AcatBBcatCdomdomC=domdomC
9 7 8 sscfn2 AcatBBcatCCFndomdomC×domdomC
10 5 9 7 ssc1 AcatBBcatCdomdomBdomdomC
11 6 10 sstrd AcatBBcatCdomdomAdomdomC
12 3 adantr AcatBBcatCxdomdomAydomdomAAFndomdomA×domdomA
13 1 adantr AcatBBcatCxdomdomAydomdomAAcatB
14 simprl AcatBBcatCxdomdomAydomdomAxdomdomA
15 simprr AcatBBcatCxdomdomAydomdomAydomdomA
16 12 13 14 15 ssc2 AcatBBcatCxdomdomAydomdomAxAyxBy
17 5 adantr AcatBBcatCxdomdomAydomdomABFndomdomB×domdomB
18 7 adantr AcatBBcatCxdomdomAydomdomABcatC
19 6 adantr AcatBBcatCxdomdomAydomdomAdomdomAdomdomB
20 19 14 sseldd AcatBBcatCxdomdomAydomdomAxdomdomB
21 19 15 sseldd AcatBBcatCxdomdomAydomdomAydomdomB
22 17 18 20 21 ssc2 AcatBBcatCxdomdomAydomdomAxByxCy
23 16 22 sstrd AcatBBcatCxdomdomAydomdomAxAyxCy
24 23 ralrimivva AcatBBcatCxdomdomAydomdomAxAyxCy
25 sscrel Relcat
26 25 brrelex2i BcatCCV
27 26 adantl AcatBBcatCCV
28 dmexg CVdomCV
29 dmexg domCVdomdomCV
30 27 28 29 3syl AcatBBcatCdomdomCV
31 3 9 30 isssc AcatBBcatCAcatCdomdomAdomdomCxdomdomAydomdomAxAyxCy
32 11 24 31 mpbir2and AcatBBcatCAcatC