| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssdec.1 |
|
| 2 |
|
ssdec.2 |
|
| 3 |
|
eluzel2 |
|
| 4 |
1 3
|
syl |
|
| 5 |
|
eluzelz |
|
| 6 |
1 5
|
syl |
|
| 7 |
4 6
|
jca |
|
| 8 |
|
eluzle |
|
| 9 |
1 8
|
syl |
|
| 10 |
6
|
zred |
|
| 11 |
10
|
leidd |
|
| 12 |
6 9 11
|
3jca |
|
| 13 |
7 12
|
jca |
|
| 14 |
|
fveq2 |
|
| 15 |
14
|
sseq1d |
|
| 16 |
15
|
imbi2d |
|
| 17 |
|
fveq2 |
|
| 18 |
17
|
sseq1d |
|
| 19 |
18
|
imbi2d |
|
| 20 |
|
fveq2 |
|
| 21 |
20
|
sseq1d |
|
| 22 |
21
|
imbi2d |
|
| 23 |
|
fveq2 |
|
| 24 |
23
|
sseq1d |
|
| 25 |
24
|
imbi2d |
|
| 26 |
|
ssidd |
|
| 27 |
26
|
a1i |
|
| 28 |
|
simpr |
|
| 29 |
|
simplll |
|
| 30 |
|
simplr1 |
|
| 31 |
|
simplr2 |
|
| 32 |
29 30 31
|
3jca |
|
| 33 |
|
eluz2 |
|
| 34 |
32 33
|
sylibr |
|
| 35 |
|
simpllr |
|
| 36 |
|
simplr3 |
|
| 37 |
34 35 36
|
3jca |
|
| 38 |
|
elfzo2 |
|
| 39 |
37 38
|
sylibr |
|
| 40 |
28 39 2
|
syl2anc |
|
| 41 |
40
|
3adant2 |
|
| 42 |
|
simpr |
|
| 43 |
|
simpl |
|
| 44 |
|
pm3.35 |
|
| 45 |
42 43 44
|
syl2anc |
|
| 46 |
45
|
3adant1 |
|
| 47 |
41 46
|
sstrd |
|
| 48 |
47
|
3exp |
|
| 49 |
16 19 22 25 27 48
|
fzind |
|
| 50 |
13 49
|
mpcom |
|