Description: Lemma for sseqf amd sseqp1 . (Contributed by Thierry Arnoux, 25-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sseqval.1 | |
|
sseqval.2 | |
||
sseqval.3 | |
||
sseqval.4 | |
||
Assertion | sseqmw | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqval.1 | |
|
2 | sseqval.2 | |
|
3 | sseqval.3 | |
|
4 | sseqval.4 | |
|
5 | elex | |
|
6 | 2 5 | syl | |
7 | lencl | |
|
8 | 7 | nn0zd | |
9 | uzid | |
|
10 | 2 8 9 | 3syl | |
11 | hashf | |
|
12 | ffn | |
|
13 | elpreima | |
|
14 | 11 12 13 | mp2b | |
15 | 6 10 14 | sylanbrc | |
16 | 2 15 | elind | |
17 | 16 3 | eleqtrrdi | |