Metamath Proof Explorer


Theorem sseqmw

Description: Lemma for sseqf amd sseqp1 . (Contributed by Thierry Arnoux, 25-Apr-2019)

Ref Expression
Hypotheses sseqval.1 φSV
sseqval.2 φMWordS
sseqval.3 W=WordS.-1M
sseqval.4 φF:WS
Assertion sseqmw φMW

Proof

Step Hyp Ref Expression
1 sseqval.1 φSV
2 sseqval.2 φMWordS
3 sseqval.3 W=WordS.-1M
4 sseqval.4 φF:WS
5 elex MWordSMV
6 2 5 syl φMV
7 lencl MWordSM0
8 7 nn0zd MWordSM
9 uzid MMM
10 2 8 9 3syl φMM
11 hashf .:V0+∞
12 ffn .:V0+∞.FnV
13 elpreima .FnVM.-1MMVMM
14 11 12 13 mp2b M.-1MMVMM
15 6 10 14 sylanbrc φM.-1M
16 2 15 elind φMWordS.-1M
17 16 3 eleqtrrdi φMW