Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Sequences defined by strong recursion
sseqmw
Next ⟩
sseqf
Metamath Proof Explorer
Ascii
Unicode
Theorem
sseqmw
Description:
Lemma for
sseqf
amd
sseqp1
.
(Contributed by
Thierry Arnoux
, 25-Apr-2019)
Ref
Expression
Hypotheses
sseqval.1
⊢
φ
→
S
∈
V
sseqval.2
⊢
φ
→
M
∈
Word
S
sseqval.3
⊢
W
=
Word
S
∩
.
-1
ℤ
≥
M
sseqval.4
⊢
φ
→
F
:
W
⟶
S
Assertion
sseqmw
⊢
φ
→
M
∈
W
Proof
Step
Hyp
Ref
Expression
1
sseqval.1
⊢
φ
→
S
∈
V
2
sseqval.2
⊢
φ
→
M
∈
Word
S
3
sseqval.3
⊢
W
=
Word
S
∩
.
-1
ℤ
≥
M
4
sseqval.4
⊢
φ
→
F
:
W
⟶
S
5
elex
⊢
M
∈
Word
S
→
M
∈
V
6
2
5
syl
⊢
φ
→
M
∈
V
7
lencl
⊢
M
∈
Word
S
→
M
∈
ℕ
0
8
7
nn0zd
⊢
M
∈
Word
S
→
M
∈
ℤ
9
uzid
⊢
M
∈
ℤ
→
M
∈
ℤ
≥
M
10
2
8
9
3syl
⊢
φ
→
M
∈
ℤ
≥
M
11
hashf
⊢
.
:
V
⟶
ℕ
0
∪
+∞
12
ffn
⊢
.
:
V
⟶
ℕ
0
∪
+∞
→
.
Fn
V
13
elpreima
⊢
.
Fn
V
→
M
∈
.
-1
ℤ
≥
M
↔
M
∈
V
∧
M
∈
ℤ
≥
M
14
11
12
13
mp2b
⊢
M
∈
.
-1
ℤ
≥
M
↔
M
∈
V
∧
M
∈
ℤ
≥
M
15
6
10
14
sylanbrc
⊢
φ
→
M
∈
.
-1
ℤ
≥
M
16
2
15
elind
⊢
φ
→
M
∈
Word
S
∩
.
-1
ℤ
≥
M
17
16
3
eleqtrrdi
⊢
φ
→
M
∈
W