Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssinc.1 | |
|
ssinc.2 | |
||
Assertion | ssinc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssinc.1 | |
|
2 | ssinc.2 | |
|
3 | eluzel2 | |
|
4 | 1 3 | syl | |
5 | eluzelz | |
|
6 | 1 5 | syl | |
7 | 4 6 | jca | |
8 | eluzle | |
|
9 | 1 8 | syl | |
10 | 6 | zred | |
11 | 10 | leidd | |
12 | 6 9 11 | 3jca | |
13 | 7 12 | jca | |
14 | id | |
|
15 | fveq2 | |
|
16 | 15 | sseq2d | |
17 | 16 | imbi2d | |
18 | fveq2 | |
|
19 | 18 | sseq2d | |
20 | 19 | imbi2d | |
21 | fveq2 | |
|
22 | 21 | sseq2d | |
23 | 22 | imbi2d | |
24 | fveq2 | |
|
25 | 24 | sseq2d | |
26 | 25 | imbi2d | |
27 | ssidd | |
|
28 | 27 | a1i | |
29 | simpr | |
|
30 | simpl | |
|
31 | pm3.35 | |
|
32 | 29 30 31 | syl2anc | |
33 | 32 | 3adant1 | |
34 | simpr | |
|
35 | simplll | |
|
36 | simplr1 | |
|
37 | simplr2 | |
|
38 | 35 36 37 | 3jca | |
39 | eluz2 | |
|
40 | 38 39 | sylibr | |
41 | simpllr | |
|
42 | simplr3 | |
|
43 | 40 41 42 | 3jca | |
44 | elfzo2 | |
|
45 | 43 44 | sylibr | |
46 | 34 45 2 | syl2anc | |
47 | 46 | 3adant2 | |
48 | 33 47 | sstrd | |
49 | 48 | 3exp | |
50 | 17 20 23 26 28 49 | fzind | |
51 | 13 14 50 | sylc | |