Metamath Proof Explorer


Theorem ssinc

Description: Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses ssinc.1 φNM
ssinc.2 φmM..^NFmFm+1
Assertion ssinc φFMFN

Proof

Step Hyp Ref Expression
1 ssinc.1 φNM
2 ssinc.2 φmM..^NFmFm+1
3 eluzel2 NMM
4 1 3 syl φM
5 eluzelz NMN
6 1 5 syl φN
7 4 6 jca φMN
8 eluzle NMMN
9 1 8 syl φMN
10 6 zred φN
11 10 leidd φNN
12 6 9 11 3jca φNMNNN
13 7 12 jca φMNNMNNN
14 id φφ
15 fveq2 n=MFn=FM
16 15 sseq2d n=MFMFnFMFM
17 16 imbi2d n=MφFMFnφFMFM
18 fveq2 n=mFn=Fm
19 18 sseq2d n=mFMFnFMFm
20 19 imbi2d n=mφFMFnφFMFm
21 fveq2 n=m+1Fn=Fm+1
22 21 sseq2d n=m+1FMFnFMFm+1
23 22 imbi2d n=m+1φFMFnφFMFm+1
24 fveq2 n=NFn=FN
25 24 sseq2d n=NFMFnFMFN
26 25 imbi2d n=NφFMFnφFMFN
27 ssidd φFMFM
28 27 a1i MNMNφFMFM
29 simpr φFMFmφφ
30 simpl φFMFmφφFMFm
31 pm3.35 φφFMFmFMFm
32 29 30 31 syl2anc φFMFmφFMFm
33 32 3adant1 MNmMmm<NφFMFmφFMFm
34 simpr MNmMmm<Nφφ
35 simplll MNmMmm<NφM
36 simplr1 MNmMmm<Nφm
37 simplr2 MNmMmm<NφMm
38 35 36 37 3jca MNmMmm<NφMmMm
39 eluz2 mMMmMm
40 38 39 sylibr MNmMmm<NφmM
41 simpllr MNmMmm<NφN
42 simplr3 MNmMmm<Nφm<N
43 40 41 42 3jca MNmMmm<NφmMNm<N
44 elfzo2 mM..^NmMNm<N
45 43 44 sylibr MNmMmm<NφmM..^N
46 34 45 2 syl2anc MNmMmm<NφFmFm+1
47 46 3adant2 MNmMmm<NφFMFmφFmFm+1
48 33 47 sstrd MNmMmm<NφFMFmφFMFm+1
49 48 3exp MNmMmm<NφFMFmφFMFm+1
50 17 20 23 26 28 49 fzind MNNMNNNφFMFN
51 13 14 50 sylc φFMFN