Metamath Proof Explorer


Theorem ssnnf1octb

Description: There exists a bijection between a subset of NN and a given nonempty countable set. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion ssnnf1octb AωAfdomff:domf1-1 ontoA

Proof

Step Hyp Ref Expression
1 nnfoctb AωAgg:ontoA
2 fofn g:ontoAgFn
3 nnex V
4 3 a1i g:ontoAV
5 ltwenn <We
6 5 a1i g:ontoA<We
7 2 4 6 wessf1orn g:ontoAx𝒫gx:x1-1 ontorang
8 f1odm gx:x1-1 ontorangdomgx=x
9 8 adantl x𝒫gx:x1-1 ontorangdomgx=x
10 elpwi x𝒫x
11 10 adantr x𝒫gx:x1-1 ontorangx
12 9 11 eqsstrd x𝒫gx:x1-1 ontorangdomgx
13 12 3adant1 g:ontoAx𝒫gx:x1-1 ontorangdomgx
14 simpr g:ontoAgx:x1-1 ontoranggx:x1-1 ontorang
15 eqidd g:ontoAgx:x1-1 ontoranggx=gx
16 8 eqcomd gx:x1-1 ontorangx=domgx
17 16 adantl g:ontoAgx:x1-1 ontorangx=domgx
18 forn g:ontoArang=A
19 18 adantr g:ontoAgx:x1-1 ontorangrang=A
20 15 17 19 f1oeq123d g:ontoAgx:x1-1 ontoranggx:x1-1 ontoranggx:domgx1-1 ontoA
21 14 20 mpbid g:ontoAgx:x1-1 ontoranggx:domgx1-1 ontoA
22 21 3adant2 g:ontoAx𝒫gx:x1-1 ontoranggx:domgx1-1 ontoA
23 vex gV
24 23 resex gxV
25 dmeq f=gxdomf=domgx
26 25 sseq1d f=gxdomfdomgx
27 id f=gxf=gx
28 eqidd f=gxA=A
29 27 25 28 f1oeq123d f=gxf:domf1-1 ontoAgx:domgx1-1 ontoA
30 26 29 anbi12d f=gxdomff:domf1-1 ontoAdomgxgx:domgx1-1 ontoA
31 24 30 spcev domgxgx:domgx1-1 ontoAfdomff:domf1-1 ontoA
32 13 22 31 syl2anc g:ontoAx𝒫gx:x1-1 ontorangfdomff:domf1-1 ontoA
33 32 3exp g:ontoAx𝒫gx:x1-1 ontorangfdomff:domf1-1 ontoA
34 33 rexlimdv g:ontoAx𝒫gx:x1-1 ontorangfdomff:domf1-1 ontoA
35 7 34 mpd g:ontoAfdomff:domf1-1 ontoA
36 35 a1i AωAg:ontoAfdomff:domf1-1 ontoA
37 36 exlimdv AωAgg:ontoAfdomff:domf1-1 ontoA
38 1 37 mpd AωAfdomff:domf1-1 ontoA