Description: There exists a bijection between a subset of NN and a given nonempty countable set. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | ssnnf1octb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnfoctb | |
|
2 | fofn | |
|
3 | nnex | |
|
4 | 3 | a1i | |
5 | ltwenn | |
|
6 | 5 | a1i | |
7 | 2 4 6 | wessf1orn | |
8 | f1odm | |
|
9 | 8 | adantl | |
10 | elpwi | |
|
11 | 10 | adantr | |
12 | 9 11 | eqsstrd | |
13 | 12 | 3adant1 | |
14 | simpr | |
|
15 | eqidd | |
|
16 | 8 | eqcomd | |
17 | 16 | adantl | |
18 | forn | |
|
19 | 18 | adantr | |
20 | 15 17 19 | f1oeq123d | |
21 | 14 20 | mpbid | |
22 | 21 | 3adant2 | |
23 | vex | |
|
24 | 23 | resex | |
25 | dmeq | |
|
26 | 25 | sseq1d | |
27 | id | |
|
28 | eqidd | |
|
29 | 27 25 28 | f1oeq123d | |
30 | 26 29 | anbi12d | |
31 | 24 30 | spcev | |
32 | 13 22 31 | syl2anc | |
33 | 32 | 3exp | |
34 | 33 | rexlimdv | |
35 | 7 34 | mpd | |
36 | 35 | a1i | |
37 | 36 | exlimdv | |
38 | 1 37 | mpd | |