Metamath Proof Explorer


Theorem sspz

Description: The zero vector of a subspace is the same as the parent's. (Contributed by NM, 28-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sspz.z Z=0vecU
sspz.q Q=0vecW
sspz.h H=SubSpU
Assertion sspz UNrmCVecWHQ=Z

Proof

Step Hyp Ref Expression
1 sspz.z Z=0vecU
2 sspz.q Q=0vecW
3 sspz.h H=SubSpU
4 3 sspnv UNrmCVecWHWNrmCVec
5 eqid BaseSetW=BaseSetW
6 5 2 nvzcl WNrmCVecQBaseSetW
7 6 6 jca WNrmCVecQBaseSetWQBaseSetW
8 4 7 syl UNrmCVecWHQBaseSetWQBaseSetW
9 eqid -vU=-vU
10 eqid -vW=-vW
11 5 9 10 3 sspmval UNrmCVecWHQBaseSetWQBaseSetWQ-vWQ=Q-vUQ
12 8 11 mpdan UNrmCVecWHQ-vWQ=Q-vUQ
13 5 10 2 nvmid WNrmCVecQBaseSetWQ-vWQ=Q
14 4 6 13 syl2anc2 UNrmCVecWHQ-vWQ=Q
15 eqid BaseSetU=BaseSetU
16 15 5 3 sspba UNrmCVecWHBaseSetWBaseSetU
17 4 6 syl UNrmCVecWHQBaseSetW
18 16 17 sseldd UNrmCVecWHQBaseSetU
19 15 9 1 nvmid UNrmCVecQBaseSetUQ-vUQ=Z
20 18 19 syldan UNrmCVecWHQ-vUQ=Z
21 12 14 20 3eqtr3d UNrmCVecWHQ=Z