Metamath Proof Explorer


Theorem sssslt2

Description: Relationship between surreal set less than and subset. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion sssslt2 A s B C B A s C

Proof

Step Hyp Ref Expression
1 ssltex1 A s B A V
2 1 adantr A s B C B A V
3 ssltex2 A s B B V
4 3 adantr A s B C B B V
5 simpr A s B C B C B
6 4 5 ssexd A s B C B C V
7 ssltss1 A s B A No
8 7 adantr A s B C B A No
9 ssltss2 A s B B No
10 9 adantr A s B C B B No
11 5 10 sstrd A s B C B C No
12 ssltsep A s B x A y B x < s y
13 ssralv C B y B x < s y y C x < s y
14 13 ralimdv C B x A y B x < s y x A y C x < s y
15 12 14 mpan9 A s B C B x A y C x < s y
16 8 11 15 3jca A s B C B A No C No x A y C x < s y
17 brsslt A s C A V C V A No C No x A y C x < s y
18 2 6 16 17 syl21anbrc A s B C B A s C