Metamath Proof Explorer


Theorem sticksstones5

Description: Count the number of strictly monotonely increasing functions on finite domains and codomains. (Contributed by metakunt, 28-Sep-2024)

Ref Expression
Hypotheses sticksstones5.1 φN0
sticksstones5.2 φK0
sticksstones5.3 A=f|f:1K1Nx1Ky1Kx<yfx<fy
Assertion sticksstones5 φA=(NK)

Proof

Step Hyp Ref Expression
1 sticksstones5.1 φN0
2 sticksstones5.2 φK0
3 sticksstones5.3 A=f|f:1K1Nx1Ky1Kx<yfx<fy
4 eqid s𝒫1N|s=K=s𝒫1N|s=K
5 1 2 4 3 sticksstones4 φAs𝒫1N|s=K
6 hasheni As𝒫1N|s=KA=s𝒫1N|s=K
7 5 6 syl φA=s𝒫1N|s=K
8 fzfid φ1NFin
9 2 nn0zd φK
10 hashbc 1NFinK(1NK)=s𝒫1N|s=K
11 8 9 10 syl2anc φ(1NK)=s𝒫1N|s=K
12 11 eqcomd φs𝒫1N|s=K=(1NK)
13 hashfz1 N01N=N
14 1 13 syl φ1N=N
15 14 oveq1d φ(1NK)=(NK)
16 12 15 eqtrd φs𝒫1N|s=K=(NK)
17 7 16 eqtrd φA=(NK)