Metamath Proof Explorer


Theorem sticksstones5

Description: Count the number of strictly monotonely increasing functions on finite domains and codomains. (Contributed by metakunt, 28-Sep-2024)

Ref Expression
Hypotheses sticksstones5.1 φ N 0
sticksstones5.2 φ K 0
sticksstones5.3 A = f | f : 1 K 1 N x 1 K y 1 K x < y f x < f y
Assertion sticksstones5 φ A = ( N K)

Proof

Step Hyp Ref Expression
1 sticksstones5.1 φ N 0
2 sticksstones5.2 φ K 0
3 sticksstones5.3 A = f | f : 1 K 1 N x 1 K y 1 K x < y f x < f y
4 eqid s 𝒫 1 N | s = K = s 𝒫 1 N | s = K
5 1 2 4 3 sticksstones4 φ A s 𝒫 1 N | s = K
6 hasheni A s 𝒫 1 N | s = K A = s 𝒫 1 N | s = K
7 5 6 syl φ A = s 𝒫 1 N | s = K
8 fzfid φ 1 N Fin
9 2 nn0zd φ K
10 hashbc 1 N Fin K ( 1 N K) = s 𝒫 1 N | s = K
11 8 9 10 syl2anc φ ( 1 N K) = s 𝒫 1 N | s = K
12 11 eqcomd φ s 𝒫 1 N | s = K = ( 1 N K)
13 hashfz1 N 0 1 N = N
14 1 13 syl φ 1 N = N
15 14 oveq1d φ ( 1 N K) = ( N K)
16 12 15 eqtrd φ s 𝒫 1 N | s = K = ( N K)
17 7 16 eqtrd φ A = ( N K)