Description: This lemma proves that there exists a function g as in the proof in BrosowskiDeutsh p. 92: g is in the subalgebra, and for all t in T , abs( f(t) - g(t) ) < 2*ε. Here F is used to represent f in the paper, and E is used to represent ε. For this lemma there's the further assumption that the function F to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem61.1 | |
|
stoweidlem61.2 | |
||
stoweidlem61.3 | |
||
stoweidlem61.4 | |
||
stoweidlem61.5 | |
||
stoweidlem61.6 | |
||
stoweidlem61.7 | |
||
stoweidlem61.8 | |
||
stoweidlem61.9 | |
||
stoweidlem61.10 | |
||
stoweidlem61.11 | |
||
stoweidlem61.12 | |
||
stoweidlem61.13 | |
||
stoweidlem61.14 | |
||
stoweidlem61.15 | |
||
stoweidlem61.16 | |
||
Assertion | stoweidlem61 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem61.1 | |
|
2 | stoweidlem61.2 | |
|
3 | stoweidlem61.3 | |
|
4 | stoweidlem61.4 | |
|
5 | stoweidlem61.5 | |
|
6 | stoweidlem61.6 | |
|
7 | stoweidlem61.7 | |
|
8 | stoweidlem61.8 | |
|
9 | stoweidlem61.9 | |
|
10 | stoweidlem61.10 | |
|
11 | stoweidlem61.11 | |
|
12 | stoweidlem61.12 | |
|
13 | stoweidlem61.13 | |
|
14 | stoweidlem61.14 | |
|
15 | stoweidlem61.15 | |
|
16 | stoweidlem61.16 | |
|
17 | eqid | |
|
18 | eqid | |
|
19 | 1 2 3 5 7 17 18 4 6 8 9 10 11 12 13 14 15 16 | stoweidlem60 | |
20 | nfv | |
|
21 | 2 20 | nfan | |
22 | 15 | ad2antrr | |
23 | 3 5 7 13 | fcnre | |
24 | 23 | ffvelcdmda | |
25 | 24 | adantlr | |
26 | 8 | sselda | |
27 | 3 5 7 26 | fcnre | |
28 | 27 | ffvelcdmda | |
29 | simpll1 | |
|
30 | simpll2 | |
|
31 | simpll3 | |
|
32 | simplr | |
|
33 | simprll | |
|
34 | simprlr | |
|
35 | simprrr | |
|
36 | simprrl | |
|
37 | 29 30 31 32 33 34 35 36 | stoweidlem13 | |
38 | 37 | rexlimdva2 | |
39 | 22 25 28 38 | syl3anc | |
40 | 21 39 | ralimdaa | |
41 | 40 | reximdva | |
42 | 19 41 | mpd | |