Metamath Proof Explorer


Theorem stoweidlem61

Description: This lemma proves that there exists a function g as in the proof in BrosowskiDeutsh p. 92: g is in the subalgebra, and for all t in T , abs( f(t) - g(t) ) < 2*ε. Here F is used to represent f in the paper, and E is used to represent ε. For this lemma there's the further assumption that the function F to be approximated is nonnegative (this assumption is removed in a later theorem). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem61.1 _tF
stoweidlem61.2 tφ
stoweidlem61.3 K=topGenran.
stoweidlem61.4 φJComp
stoweidlem61.5 T=J
stoweidlem61.6 φT
stoweidlem61.7 C=JCnK
stoweidlem61.8 φAC
stoweidlem61.9 φfAgAtTft+gtA
stoweidlem61.10 φfAgAtTftgtA
stoweidlem61.11 φxtTxA
stoweidlem61.12 φrTtTrtqAqrqt
stoweidlem61.13 φFC
stoweidlem61.14 φtT0Ft
stoweidlem61.15 φE+
stoweidlem61.16 φE<13
Assertion stoweidlem61 φgAtTgtFt<2E

Proof

Step Hyp Ref Expression
1 stoweidlem61.1 _tF
2 stoweidlem61.2 tφ
3 stoweidlem61.3 K=topGenran.
4 stoweidlem61.4 φJComp
5 stoweidlem61.5 T=J
6 stoweidlem61.6 φT
7 stoweidlem61.7 C=JCnK
8 stoweidlem61.8 φAC
9 stoweidlem61.9 φfAgAtTft+gtA
10 stoweidlem61.10 φfAgAtTftgtA
11 stoweidlem61.11 φxtTxA
12 stoweidlem61.12 φrTtTrtqAqrqt
13 stoweidlem61.13 φFC
14 stoweidlem61.14 φtT0Ft
15 stoweidlem61.15 φE+
16 stoweidlem61.16 φE<13
17 eqid j0ntT|Ftj13E=j0ntT|Ftj13E
18 eqid j0ntT|j+13EFt=j0ntT|j+13EFt
19 1 2 3 5 7 17 18 4 6 8 9 10 11 12 13 14 15 16 stoweidlem60 φgAtTjj43E<FtFtj13Egt<j+13Ej43E<gt
20 nfv tgA
21 2 20 nfan tφgA
22 15 ad2antrr φgAtTE+
23 3 5 7 13 fcnre φF:T
24 23 ffvelcdmda φtTFt
25 24 adantlr φgAtTFt
26 8 sselda φgAgC
27 3 5 7 26 fcnre φgAg:T
28 27 ffvelcdmda φgAtTgt
29 simpll1 E+Ftgtjj43E<FtFtj13Egt<j+13Ej43E<gtE+
30 simpll2 E+Ftgtjj43E<FtFtj13Egt<j+13Ej43E<gtFt
31 simpll3 E+Ftgtjj43E<FtFtj13Egt<j+13Ej43E<gtgt
32 simplr E+Ftgtjj43E<FtFtj13Egt<j+13Ej43E<gtj
33 simprll E+Ftgtjj43E<FtFtj13Egt<j+13Ej43E<gtj43E<Ft
34 simprlr E+Ftgtjj43E<FtFtj13Egt<j+13Ej43E<gtFtj13E
35 simprrr E+Ftgtjj43E<FtFtj13Egt<j+13Ej43E<gtj43E<gt
36 simprrl E+Ftgtjj43E<FtFtj13Egt<j+13Ej43E<gtgt<j+13E
37 29 30 31 32 33 34 35 36 stoweidlem13 E+Ftgtjj43E<FtFtj13Egt<j+13Ej43E<gtgtFt<2E
38 37 rexlimdva2 E+Ftgtjj43E<FtFtj13Egt<j+13Ej43E<gtgtFt<2E
39 22 25 28 38 syl3anc φgAtTjj43E<FtFtj13Egt<j+13Ej43E<gtgtFt<2E
40 21 39 ralimdaa φgAtTjj43E<FtFtj13Egt<j+13Ej43E<gttTgtFt<2E
41 40 reximdva φgAtTjj43E<FtFtj13Egt<j+13Ej43E<gtgAtTgtFt<2E
42 19 41 mpd φgAtTgtFt<2E