Description: Lemma for stoweid : here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem9.1 | |
|
stoweidlem9.2 | |
||
Assertion | stoweidlem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoweidlem9.1 | |
|
2 | stoweidlem9.2 | |
|
3 | mpteq1 | |
|
4 | mpt0 | |
|
5 | 3 4 | eqtrdi | |
6 | 1 5 | syl | |
7 | 6 2 | eqeltrrd | |
8 | rzal | |
|
9 | 1 8 | syl | |
10 | fveq1 | |
|
11 | 10 | fvoveq1d | |
12 | 11 | breq1d | |
13 | 12 | ralbidv | |
14 | 13 | rspcev | |
15 | 7 9 14 | syl2anc | |