Metamath Proof Explorer


Theorem stoweidlem9

Description: Lemma for stoweid : here the Stone Weierstrass theorem is proven for the trivial case, T is the empty set. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem9.1 φT=
stoweidlem9.2 φtT1A
Assertion stoweidlem9 φgAtTgtFt<E

Proof

Step Hyp Ref Expression
1 stoweidlem9.1 φT=
2 stoweidlem9.2 φtT1A
3 mpteq1 T=tT1=t1
4 mpt0 t1=
5 3 4 eqtrdi T=tT1=
6 1 5 syl φtT1=
7 6 2 eqeltrrd φA
8 rzal T=tTtFt<E
9 1 8 syl φtTtFt<E
10 fveq1 g=gt=t
11 10 fvoveq1d g=gtFt=tFt
12 11 breq1d g=gtFt<EtFt<E
13 12 ralbidv g=tTgtFt<EtTtFt<E
14 13 rspcev AtTtFt<EgAtTgtFt<E
15 7 9 14 syl2anc φgAtTgtFt<E