| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgdprd.1 |
|
| 2 |
|
subgdprd.2 |
|
| 3 |
|
subgdprd.3 |
|
| 4 |
|
subgdprd.4 |
|
| 5 |
1
|
subggrp |
|
| 6 |
2 5
|
syl |
|
| 7 |
|
eqid |
|
| 8 |
7
|
subgacs |
|
| 9 |
|
acsmre |
|
| 10 |
6 8 9
|
3syl |
|
| 11 |
|
subgrcl |
|
| 12 |
2 11
|
syl |
|
| 13 |
|
eqid |
|
| 14 |
13
|
subgacs |
|
| 15 |
|
acsmre |
|
| 16 |
12 14 15
|
3syl |
|
| 17 |
|
eqid |
|
| 18 |
|
dprdf |
|
| 19 |
|
frn |
|
| 20 |
3 18 19
|
3syl |
|
| 21 |
|
mresspw |
|
| 22 |
16 21
|
syl |
|
| 23 |
20 22
|
sstrd |
|
| 24 |
|
sspwuni |
|
| 25 |
23 24
|
sylib |
|
| 26 |
16 17 25
|
mrcssidd |
|
| 27 |
17
|
mrccl |
|
| 28 |
16 25 27
|
syl2anc |
|
| 29 |
|
sspwuni |
|
| 30 |
4 29
|
sylib |
|
| 31 |
17
|
mrcsscl |
|
| 32 |
16 30 2 31
|
syl3anc |
|
| 33 |
1
|
subsubg |
|
| 34 |
2 33
|
syl |
|
| 35 |
28 32 34
|
mpbir2and |
|
| 36 |
|
eqid |
|
| 37 |
36
|
mrcsscl |
|
| 38 |
10 26 35 37
|
syl3anc |
|
| 39 |
1
|
subgdmdprd |
|
| 40 |
2 39
|
syl |
|
| 41 |
3 4 40
|
mpbir2and |
|
| 42 |
|
eqidd |
|
| 43 |
41 42
|
dprdf2 |
|
| 44 |
43
|
frnd |
|
| 45 |
|
mresspw |
|
| 46 |
10 45
|
syl |
|
| 47 |
44 46
|
sstrd |
|
| 48 |
|
sspwuni |
|
| 49 |
47 48
|
sylib |
|
| 50 |
10 36 49
|
mrcssidd |
|
| 51 |
36
|
mrccl |
|
| 52 |
10 49 51
|
syl2anc |
|
| 53 |
1
|
subsubg |
|
| 54 |
2 53
|
syl |
|
| 55 |
52 54
|
mpbid |
|
| 56 |
55
|
simpld |
|
| 57 |
17
|
mrcsscl |
|
| 58 |
16 50 56 57
|
syl3anc |
|
| 59 |
38 58
|
eqssd |
|
| 60 |
36
|
dprdspan |
|
| 61 |
41 60
|
syl |
|
| 62 |
17
|
dprdspan |
|
| 63 |
3 62
|
syl |
|
| 64 |
59 61 63
|
3eqtr4d |
|