| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgdprd.1 |
|
| 2 |
|
reldmdprd |
|
| 3 |
2
|
brrelex2i |
|
| 4 |
3
|
a1i |
|
| 5 |
2
|
brrelex2i |
|
| 6 |
5
|
adantr |
|
| 7 |
6
|
a1i |
|
| 8 |
|
ffvelcdm |
|
| 9 |
8
|
ad2ant2lr |
|
| 10 |
|
eqid |
|
| 11 |
10
|
subgss |
|
| 12 |
9 11
|
syl |
|
| 13 |
1
|
subgbas |
|
| 14 |
13
|
ad2antrr |
|
| 15 |
12 14
|
sseqtrrd |
|
| 16 |
15
|
biantrud |
|
| 17 |
|
simpll |
|
| 18 |
|
simplr |
|
| 19 |
|
eldifi |
|
| 20 |
19
|
ad2antll |
|
| 21 |
18 20
|
ffvelcdmd |
|
| 22 |
10
|
subgss |
|
| 23 |
21 22
|
syl |
|
| 24 |
23 14
|
sseqtrrd |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
1 25 26
|
resscntz |
|
| 28 |
17 24 27
|
syl2anc |
|
| 29 |
28
|
sseq2d |
|
| 30 |
|
ssin |
|
| 31 |
29 30
|
bitr4di |
|
| 32 |
16 31
|
bitr4d |
|
| 33 |
32
|
anassrs |
|
| 34 |
33
|
ralbidva |
|
| 35 |
|
subgrcl |
|
| 36 |
35
|
ad2antrr |
|
| 37 |
|
eqid |
|
| 38 |
37
|
subgacs |
|
| 39 |
|
acsmre |
|
| 40 |
36 38 39
|
3syl |
|
| 41 |
1
|
subggrp |
|
| 42 |
41
|
ad2antrr |
|
| 43 |
10
|
subgacs |
|
| 44 |
|
acsmre |
|
| 45 |
42 43 44
|
3syl |
|
| 46 |
|
eqid |
|
| 47 |
|
imassrn |
|
| 48 |
|
frn |
|
| 49 |
48
|
ad2antlr |
|
| 50 |
47 49
|
sstrid |
|
| 51 |
|
mresspw |
|
| 52 |
45 51
|
syl |
|
| 53 |
50 52
|
sstrd |
|
| 54 |
|
sspwuni |
|
| 55 |
53 54
|
sylib |
|
| 56 |
45 46 55
|
mrcssidd |
|
| 57 |
46
|
mrccl |
|
| 58 |
45 55 57
|
syl2anc |
|
| 59 |
1
|
subsubg |
|
| 60 |
59
|
ad2antrr |
|
| 61 |
58 60
|
mpbid |
|
| 62 |
61
|
simpld |
|
| 63 |
|
eqid |
|
| 64 |
63
|
mrcsscl |
|
| 65 |
40 56 62 64
|
syl3anc |
|
| 66 |
13
|
ad2antrr |
|
| 67 |
55 66
|
sseqtrrd |
|
| 68 |
37
|
subgss |
|
| 69 |
68
|
ad2antrr |
|
| 70 |
67 69
|
sstrd |
|
| 71 |
40 63 70
|
mrcssidd |
|
| 72 |
63
|
mrccl |
|
| 73 |
40 70 72
|
syl2anc |
|
| 74 |
|
simpll |
|
| 75 |
63
|
mrcsscl |
|
| 76 |
40 67 74 75
|
syl3anc |
|
| 77 |
1
|
subsubg |
|
| 78 |
77
|
ad2antrr |
|
| 79 |
73 76 78
|
mpbir2and |
|
| 80 |
46
|
mrcsscl |
|
| 81 |
45 71 79 80
|
syl3anc |
|
| 82 |
65 81
|
eqssd |
|
| 83 |
82
|
ineq2d |
|
| 84 |
|
eqid |
|
| 85 |
1 84
|
subg0 |
|
| 86 |
85
|
ad2antrr |
|
| 87 |
86
|
sneqd |
|
| 88 |
83 87
|
eqeq12d |
|
| 89 |
34 88
|
anbi12d |
|
| 90 |
89
|
ralbidva |
|
| 91 |
90
|
pm5.32da |
|
| 92 |
1
|
subsubg |
|
| 93 |
|
elin |
|
| 94 |
|
velpw |
|
| 95 |
94
|
anbi2i |
|
| 96 |
93 95
|
bitri |
|
| 97 |
92 96
|
bitr4di |
|
| 98 |
97
|
eqrdv |
|
| 99 |
98
|
sseq2d |
|
| 100 |
|
ssin |
|
| 101 |
99 100
|
bitr4di |
|
| 102 |
101
|
anbi2d |
|
| 103 |
|
df-f |
|
| 104 |
|
df-f |
|
| 105 |
104
|
anbi1i |
|
| 106 |
|
anass |
|
| 107 |
105 106
|
bitri |
|
| 108 |
102 103 107
|
3bitr4g |
|
| 109 |
108
|
anbi1d |
|
| 110 |
91 109
|
bitr3d |
|
| 111 |
110
|
adantr |
|
| 112 |
|
dmexg |
|
| 113 |
112
|
adantl |
|
| 114 |
|
eqidd |
|
| 115 |
41
|
adantr |
|
| 116 |
|
eqid |
|
| 117 |
26 116 46
|
dmdprd |
|
| 118 |
|
3anass |
|
| 119 |
117 118
|
bitrdi |
|
| 120 |
119
|
baibd |
|
| 121 |
113 114 115 120
|
syl21anc |
|
| 122 |
35
|
adantr |
|
| 123 |
25 84 63
|
dmdprd |
|
| 124 |
|
3anass |
|
| 125 |
123 124
|
bitrdi |
|
| 126 |
125
|
baibd |
|
| 127 |
113 114 122 126
|
syl21anc |
|
| 128 |
127
|
anbi1d |
|
| 129 |
|
an32 |
|
| 130 |
128 129
|
bitrdi |
|
| 131 |
111 121 130
|
3bitr4d |
|
| 132 |
131
|
ex |
|
| 133 |
4 7 132
|
pm5.21ndd |
|