| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subgsubcl.p |  | 
						
							| 2 |  | subgsub.h |  | 
						
							| 3 |  | subgsub.n |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 2 4 | ressplusg |  | 
						
							| 6 | 5 | 3ad2ant1 |  | 
						
							| 7 |  | eqidd |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 2 8 9 | subginv |  | 
						
							| 11 | 10 | 3adant2 |  | 
						
							| 12 | 6 7 11 | oveq123d |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 13 | subgss |  | 
						
							| 15 | 14 | 3ad2ant1 |  | 
						
							| 16 |  | simp2 |  | 
						
							| 17 | 15 16 | sseldd |  | 
						
							| 18 |  | simp3 |  | 
						
							| 19 | 15 18 | sseldd |  | 
						
							| 20 | 13 4 8 1 | grpsubval |  | 
						
							| 21 | 17 19 20 | syl2anc |  | 
						
							| 22 | 2 | subgbas |  | 
						
							| 23 | 22 | 3ad2ant1 |  | 
						
							| 24 | 16 23 | eleqtrd |  | 
						
							| 25 | 18 23 | eleqtrd |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 | 26 27 9 3 | grpsubval |  | 
						
							| 29 | 24 25 28 | syl2anc |  | 
						
							| 30 | 12 21 29 | 3eqtr4d |  |