Metamath Proof Explorer


Theorem submateqlem1

Description: Lemma for submateq . (Contributed by Thierry Arnoux, 25-Aug-2020)

Ref Expression
Hypotheses submateqlem1.n φN
submateqlem1.k φK1N
submateqlem1.m φM1N1
submateqlem1.1 φKM
Assertion submateqlem1 φMKNM+11NK

Proof

Step Hyp Ref Expression
1 submateqlem1.n φN
2 submateqlem1.k φK1N
3 submateqlem1.m φM1N1
4 submateqlem1.1 φKM
5 fz1ssnn 1N
6 5 2 sselid φK
7 6 nnzd φK
8 1 nnzd φN
9 fz1ssnn 1N1
10 9 3 sselid φM
11 10 nnzd φM
12 10 nnred φM
13 1 nnred φN
14 1red φ1
15 13 14 resubcld φN1
16 elfzle2 M1N1MN1
17 3 16 syl φMN1
18 13 lem1d φN1N
19 12 15 13 17 18 letrd φMN
20 7 8 11 4 19 elfzd φMKN
21 1zzd φ1
22 11 peano2zd φM+1
23 10 nnnn0d φM0
24 23 nn0ge0d φ0M
25 1re 1
26 addge02 1M0M1M+1
27 25 12 26 sylancr φ0M1M+1
28 24 27 mpbid φ1M+1
29 1 nnnn0d φN0
30 nn0ltlem1 M0N0M<NMN1
31 23 29 30 syl2anc φM<NMN1
32 17 31 mpbird φM<N
33 nnltp1le MNM<NM+1N
34 10 1 33 syl2anc φM<NM+1N
35 32 34 mpbid φM+1N
36 21 8 22 28 35 elfzd φM+11N
37 6 nnred φK
38 nnleltp1 KMKMK<M+1
39 6 10 38 syl2anc φKMK<M+1
40 4 39 mpbid φK<M+1
41 37 40 ltned φKM+1
42 41 necomd φM+1K
43 nelsn M+1K¬M+1K
44 42 43 syl φ¬M+1K
45 36 44 eldifd φM+11NK
46 20 45 jca φMKNM+11NK