| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submateqlem1.n |  | 
						
							| 2 |  | submateqlem1.k |  | 
						
							| 3 |  | submateqlem1.m |  | 
						
							| 4 |  | submateqlem1.1 |  | 
						
							| 5 |  | fz1ssnn |  | 
						
							| 6 | 5 2 | sselid |  | 
						
							| 7 | 6 | nnzd |  | 
						
							| 8 | 1 | nnzd |  | 
						
							| 9 |  | fz1ssnn |  | 
						
							| 10 | 9 3 | sselid |  | 
						
							| 11 | 10 | nnzd |  | 
						
							| 12 | 10 | nnred |  | 
						
							| 13 | 1 | nnred |  | 
						
							| 14 |  | 1red |  | 
						
							| 15 | 13 14 | resubcld |  | 
						
							| 16 |  | elfzle2 |  | 
						
							| 17 | 3 16 | syl |  | 
						
							| 18 | 13 | lem1d |  | 
						
							| 19 | 12 15 13 17 18 | letrd |  | 
						
							| 20 | 7 8 11 4 19 | elfzd |  | 
						
							| 21 |  | 1zzd |  | 
						
							| 22 | 11 | peano2zd |  | 
						
							| 23 | 10 | nnnn0d |  | 
						
							| 24 | 23 | nn0ge0d |  | 
						
							| 25 |  | 1re |  | 
						
							| 26 |  | addge02 |  | 
						
							| 27 | 25 12 26 | sylancr |  | 
						
							| 28 | 24 27 | mpbid |  | 
						
							| 29 | 1 | nnnn0d |  | 
						
							| 30 |  | nn0ltlem1 |  | 
						
							| 31 | 23 29 30 | syl2anc |  | 
						
							| 32 | 17 31 | mpbird |  | 
						
							| 33 |  | nnltp1le |  | 
						
							| 34 | 10 1 33 | syl2anc |  | 
						
							| 35 | 32 34 | mpbid |  | 
						
							| 36 | 21 8 22 28 35 | elfzd |  | 
						
							| 37 | 6 | nnred |  | 
						
							| 38 |  | nnleltp1 |  | 
						
							| 39 | 6 10 38 | syl2anc |  | 
						
							| 40 | 4 39 | mpbid |  | 
						
							| 41 | 37 40 | ltned |  | 
						
							| 42 | 41 | necomd |  | 
						
							| 43 |  | nelsn |  | 
						
							| 44 | 42 43 | syl |  | 
						
							| 45 | 36 44 | eldifd |  | 
						
							| 46 | 20 45 | jca |  |