Description: Lemma for submateq . (Contributed by Thierry Arnoux, 25-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | submateqlem1.n | |
|
submateqlem1.k | |
||
submateqlem1.m | |
||
submateqlem1.1 | |
||
Assertion | submateqlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submateqlem1.n | |
|
2 | submateqlem1.k | |
|
3 | submateqlem1.m | |
|
4 | submateqlem1.1 | |
|
5 | fz1ssnn | |
|
6 | 5 2 | sselid | |
7 | 6 | nnzd | |
8 | 1 | nnzd | |
9 | fz1ssnn | |
|
10 | 9 3 | sselid | |
11 | 10 | nnzd | |
12 | 10 | nnred | |
13 | 1 | nnred | |
14 | 1red | |
|
15 | 13 14 | resubcld | |
16 | elfzle2 | |
|
17 | 3 16 | syl | |
18 | 13 | lem1d | |
19 | 12 15 13 17 18 | letrd | |
20 | 7 8 11 4 19 | elfzd | |
21 | 1zzd | |
|
22 | 11 | peano2zd | |
23 | 10 | nnnn0d | |
24 | 23 | nn0ge0d | |
25 | 1re | |
|
26 | addge02 | |
|
27 | 25 12 26 | sylancr | |
28 | 24 27 | mpbid | |
29 | 1 | nnnn0d | |
30 | nn0ltlem1 | |
|
31 | 23 29 30 | syl2anc | |
32 | 17 31 | mpbird | |
33 | nnltp1le | |
|
34 | 10 1 33 | syl2anc | |
35 | 32 34 | mpbid | |
36 | 21 8 22 28 35 | elfzd | |
37 | 6 | nnred | |
38 | nnleltp1 | |
|
39 | 6 10 38 | syl2anc | |
40 | 4 39 | mpbid | |
41 | 37 40 | ltned | |
42 | 41 | necomd | |
43 | nelsn | |
|
44 | 42 43 | syl | |
45 | 36 44 | eldifd | |
46 | 20 45 | jca | |