Metamath Proof Explorer


Theorem subrgmpl

Description: A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015)

Ref Expression
Hypotheses subrgmpl.s S=ImPolyR
subrgmpl.h H=R𝑠T
subrgmpl.u U=ImPolyH
subrgmpl.b B=BaseU
Assertion subrgmpl IVTSubRingRBSubRingS

Proof

Step Hyp Ref Expression
1 subrgmpl.s S=ImPolyR
2 subrgmpl.h H=R𝑠T
3 subrgmpl.u U=ImPolyH
4 subrgmpl.b B=BaseU
5 simpl IVTSubRingRIV
6 simpr IVTSubRingRTSubRingR
7 eqid ImPwSerH=ImPwSerH
8 eqid BaseImPwSerH=BaseImPwSerH
9 eqid BaseS=BaseS
10 1 2 3 4 5 6 7 8 9 ressmplbas2 IVTSubRingRB=BaseImPwSerHBaseS
11 eqid ImPwSerR=ImPwSerR
12 11 2 7 8 subrgpsr IVTSubRingRBaseImPwSerHSubRingImPwSerR
13 subrgrcl TSubRingRRRing
14 13 adantl IVTSubRingRRRing
15 11 1 9 5 14 mplsubrg IVTSubRingRBaseSSubRingImPwSerR
16 subrgin BaseImPwSerHSubRingImPwSerRBaseSSubRingImPwSerRBaseImPwSerHBaseSSubRingImPwSerR
17 12 15 16 syl2anc IVTSubRingRBaseImPwSerHBaseSSubRingImPwSerR
18 10 17 eqeltrd IVTSubRingRBSubRingImPwSerR
19 inss2 BaseImPwSerHBaseSBaseS
20 10 19 eqsstrdi IVTSubRingRBBaseS
21 1 11 9 mplval2 S=ImPwSerR𝑠BaseS
22 21 subsubrg BaseSSubRingImPwSerRBSubRingSBSubRingImPwSerRBBaseS
23 15 22 syl IVTSubRingRBSubRingSBSubRingImPwSerRBBaseS
24 18 20 23 mpbir2and IVTSubRingRBSubRingS