Description: A subring of the base ring induces a subring of polynomials. (Contributed by Mario Carneiro, 3-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subrgmpl.s | |
|
subrgmpl.h | |
||
subrgmpl.u | |
||
subrgmpl.b | |
||
Assertion | subrgmpl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgmpl.s | |
|
2 | subrgmpl.h | |
|
3 | subrgmpl.u | |
|
4 | subrgmpl.b | |
|
5 | simpl | |
|
6 | simpr | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 1 2 3 4 5 6 7 8 9 | ressmplbas2 | |
11 | eqid | |
|
12 | 11 2 7 8 | subrgpsr | |
13 | subrgrcl | |
|
14 | 13 | adantl | |
15 | 11 1 9 5 14 | mplsubrg | |
16 | subrgin | |
|
17 | 12 15 16 | syl2anc | |
18 | 10 17 | eqeltrd | |
19 | inss2 | |
|
20 | 10 19 | eqsstrdi | |
21 | 1 11 9 | mplval2 | |
22 | 21 | subsubrg | |
23 | 15 22 | syl | |
24 | 18 20 23 | mpbir2and | |