| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subsubrng.s |  | 
						
							| 2 |  | subrngrcl |  | 
						
							| 3 | 2 | adantr |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 4 | subrngss |  | 
						
							| 6 | 5 | adantl |  | 
						
							| 7 | 1 | subrngbas |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 | 6 8 | sseqtrrd |  | 
						
							| 10 | 1 | oveq1i |  | 
						
							| 11 |  | ressabs |  | 
						
							| 12 | 10 11 | eqtrid |  | 
						
							| 13 | 9 12 | syldan |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 14 | subrngrng |  | 
						
							| 16 | 15 | adantl |  | 
						
							| 17 | 13 16 | eqeltrrd |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 18 | subrngss |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 | 9 20 | sstrd |  | 
						
							| 22 | 18 | issubrng |  | 
						
							| 23 | 3 17 21 22 | syl3anbrc |  | 
						
							| 24 | 23 9 | jca |  | 
						
							| 25 | 1 | subrngrng |  | 
						
							| 26 | 25 | adantr |  | 
						
							| 27 | 12 | adantrl |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 28 | subrngrng |  | 
						
							| 30 | 29 | ad2antrl |  | 
						
							| 31 | 27 30 | eqeltrd |  | 
						
							| 32 |  | simprr |  | 
						
							| 33 | 7 | adantr |  | 
						
							| 34 | 32 33 | sseqtrd |  | 
						
							| 35 | 4 | issubrng |  | 
						
							| 36 | 26 31 34 35 | syl3anbrc |  | 
						
							| 37 | 24 36 | impbida |  |