Metamath Proof Explorer


Theorem sumeq1

Description: Equality theorem for a sum. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jun-2019)

Ref Expression
Assertion sumeq1 A=BkAC=kBC

Proof

Step Hyp Ref Expression
1 sseq1 A=BAmBm
2 simpl A=BnA=B
3 2 eleq2d A=BnnAnB
4 3 ifbid A=BnifnAn/kC0=ifnBn/kC0
5 4 mpteq2dva A=BnifnAn/kC0=nifnBn/kC0
6 5 seqeq3d A=Bseqm+nifnAn/kC0=seqm+nifnBn/kC0
7 6 breq1d A=Bseqm+nifnAn/kC0xseqm+nifnBn/kC0x
8 1 7 anbi12d A=BAmseqm+nifnAn/kC0xBmseqm+nifnBn/kC0x
9 8 rexbidv A=BmAmseqm+nifnAn/kC0xmBmseqm+nifnBn/kC0x
10 f1oeq3 A=Bf:1m1-1 ontoAf:1m1-1 ontoB
11 10 anbi1d A=Bf:1m1-1 ontoAx=seq1+nfn/kCmf:1m1-1 ontoBx=seq1+nfn/kCm
12 11 exbidv A=Bff:1m1-1 ontoAx=seq1+nfn/kCmff:1m1-1 ontoBx=seq1+nfn/kCm
13 12 rexbidv A=Bmff:1m1-1 ontoAx=seq1+nfn/kCmmff:1m1-1 ontoBx=seq1+nfn/kCm
14 9 13 orbi12d A=BmAmseqm+nifnAn/kC0xmff:1m1-1 ontoAx=seq1+nfn/kCmmBmseqm+nifnBn/kC0xmff:1m1-1 ontoBx=seq1+nfn/kCm
15 14 iotabidv A=Bιx|mAmseqm+nifnAn/kC0xmff:1m1-1 ontoAx=seq1+nfn/kCm=ιx|mBmseqm+nifnBn/kC0xmff:1m1-1 ontoBx=seq1+nfn/kCm
16 df-sum kAC=ιx|mAmseqm+nifnAn/kC0xmff:1m1-1 ontoAx=seq1+nfn/kCm
17 df-sum kBC=ιx|mBmseqm+nifnBn/kC0xmff:1m1-1 ontoBx=seq1+nfn/kCm
18 15 16 17 3eqtr4g A=BkAC=kBC