Metamath Proof Explorer


Theorem sumsnd

Description: A sum of a singleton is the term. The deduction version of sumsn . (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses sumsnd.1 φ _ k B
sumsnd.2 k φ
sumsnd.3 φ k = M A = B
sumsnd.4 φ M V
sumsnd.5 φ B
Assertion sumsnd φ k M A = B

Proof

Step Hyp Ref Expression
1 sumsnd.1 φ _ k B
2 sumsnd.2 k φ
3 sumsnd.3 φ k = M A = B
4 sumsnd.4 φ M V
5 sumsnd.5 φ B
6 nfcv _ m A
7 nfcsb1v _ k m / k A
8 csbeq1a k = m A = m / k A
9 6 7 8 cbvsumi k M A = m M m / k A
10 csbeq1 m = 1 M n m / k A = 1 M n / k A
11 1nn 1
12 11 a1i φ 1
13 f1osng 1 M V 1 M : 1 1-1 onto M
14 11 4 13 sylancr φ 1 M : 1 1-1 onto M
15 1z 1
16 fzsn 1 1 1 = 1
17 f1oeq2 1 1 = 1 1 M : 1 1 1-1 onto M 1 M : 1 1-1 onto M
18 15 16 17 mp2b 1 M : 1 1 1-1 onto M 1 M : 1 1-1 onto M
19 14 18 sylibr φ 1 M : 1 1 1-1 onto M
20 elsni m M m = M
21 20 adantl φ m M m = M
22 21 csbeq1d φ m M m / k A = M / k A
23 2 1 4 3 csbiedf φ M / k A = B
24 23 adantr φ m M M / k A = B
25 5 adantr φ m M B
26 24 25 eqeltrd φ m M M / k A
27 22 26 eqeltrd φ m M m / k A
28 23 adantr φ n 1 1 M / k A = B
29 elfz1eq n 1 1 n = 1
30 29 fveq2d n 1 1 1 M n = 1 M 1
31 fvsng 1 M V 1 M 1 = M
32 11 4 31 sylancr φ 1 M 1 = M
33 30 32 sylan9eqr φ n 1 1 1 M n = M
34 33 csbeq1d φ n 1 1 1 M n / k A = M / k A
35 29 fveq2d n 1 1 1 B n = 1 B 1
36 fvsng 1 B 1 B 1 = B
37 11 5 36 sylancr φ 1 B 1 = B
38 35 37 sylan9eqr φ n 1 1 1 B n = B
39 28 34 38 3eqtr4rd φ n 1 1 1 B n = 1 M n / k A
40 10 12 19 27 39 fsum φ m M m / k A = seq 1 + 1 B 1
41 9 40 syl5eq φ k M A = seq 1 + 1 B 1
42 15 37 seq1i φ seq 1 + 1 B 1 = B
43 41 42 eqtrd φ k M A = B