Step |
Hyp |
Ref |
Expression |
1 |
|
sumsnd.1 |
|
2 |
|
sumsnd.2 |
|
3 |
|
sumsnd.3 |
|
4 |
|
sumsnd.4 |
|
5 |
|
sumsnd.5 |
|
6 |
|
nfcv |
|
7 |
|
nfcsb1v |
|
8 |
|
csbeq1a |
|
9 |
6 7 8
|
cbvsumi |
|
10 |
|
csbeq1 |
|
11 |
|
1nn |
|
12 |
11
|
a1i |
|
13 |
|
f1osng |
|
14 |
11 4 13
|
sylancr |
|
15 |
|
1z |
|
16 |
|
fzsn |
|
17 |
|
f1oeq2 |
|
18 |
15 16 17
|
mp2b |
|
19 |
14 18
|
sylibr |
|
20 |
|
elsni |
|
21 |
20
|
adantl |
|
22 |
21
|
csbeq1d |
|
23 |
2 1 4 3
|
csbiedf |
|
24 |
23
|
adantr |
|
25 |
5
|
adantr |
|
26 |
24 25
|
eqeltrd |
|
27 |
22 26
|
eqeltrd |
|
28 |
23
|
adantr |
|
29 |
|
elfz1eq |
|
30 |
29
|
fveq2d |
|
31 |
|
fvsng |
|
32 |
11 4 31
|
sylancr |
|
33 |
30 32
|
sylan9eqr |
|
34 |
33
|
csbeq1d |
|
35 |
29
|
fveq2d |
|
36 |
|
fvsng |
|
37 |
11 5 36
|
sylancr |
|
38 |
35 37
|
sylan9eqr |
|
39 |
28 34 38
|
3eqtr4rd |
|
40 |
10 12 19 27 39
|
fsum |
|
41 |
9 40
|
eqtrid |
|
42 |
15 37
|
seq1i |
|
43 |
41 42
|
eqtrd |
|