Description: A nonempty, bounded set of signed reals has a supremum. (Contributed by NM, 21-May-1996) (Revised by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | supsr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 | |
|
2 | ltrelsr | |
|
3 | 2 | brel | |
4 | 3 | simpld | |
5 | 4 | ralimi | |
6 | dfss3 | |
|
7 | 5 6 | sylibr | |
8 | 7 | sseld | |
9 | 8 | rexlimivw | |
10 | 9 | impcom | |
11 | eleq1 | |
|
12 | 11 | anbi1d | |
13 | 12 | imbi1d | |
14 | opeq1 | |
|
15 | 14 | eceq1d | |
16 | 15 | oveq2d | |
17 | 16 | eleq1d | |
18 | 17 | cbvabv | |
19 | 1sr | |
|
20 | 19 | elimel | |
21 | 18 20 | supsrlem | |
22 | 13 21 | dedth | |
23 | 10 22 | mpcom | |
24 | 23 | ex | |
25 | 24 | exlimiv | |
26 | 1 25 | sylbi | |
27 | 26 | imp | |