Metamath Proof Explorer


Theorem supsr

Description: A nonempty, bounded set of signed reals has a supremum. (Contributed by NM, 21-May-1996) (Revised by Mario Carneiro, 15-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion supsr Ax𝑹yAy<𝑹xx𝑹yA¬x<𝑹yy𝑹y<𝑹xzAy<𝑹z

Proof

Step Hyp Ref Expression
1 n0 AuuA
2 ltrelsr <𝑹𝑹×𝑹
3 2 brel y<𝑹xy𝑹x𝑹
4 3 simpld y<𝑹xy𝑹
5 4 ralimi yAy<𝑹xyAy𝑹
6 dfss3 A𝑹yAy𝑹
7 5 6 sylibr yAy<𝑹xA𝑹
8 7 sseld yAy<𝑹xuAu𝑹
9 8 rexlimivw x𝑹yAy<𝑹xuAu𝑹
10 9 impcom uAx𝑹yAy<𝑹xu𝑹
11 eleq1 u=ifu𝑹u1𝑹uAifu𝑹u1𝑹A
12 11 anbi1d u=ifu𝑹u1𝑹uAx𝑹yAy<𝑹xifu𝑹u1𝑹Ax𝑹yAy<𝑹x
13 12 imbi1d u=ifu𝑹u1𝑹uAx𝑹yAy<𝑹xx𝑹yA¬x<𝑹yy𝑹y<𝑹xzAy<𝑹zifu𝑹u1𝑹Ax𝑹yAy<𝑹xx𝑹yA¬x<𝑹yy𝑹y<𝑹xzAy<𝑹z
14 opeq1 v=wv1𝑷=w1𝑷
15 14 eceq1d v=wv1𝑷~𝑹=w1𝑷~𝑹
16 15 oveq2d v=wifu𝑹u1𝑹+𝑹v1𝑷~𝑹=ifu𝑹u1𝑹+𝑹w1𝑷~𝑹
17 16 eleq1d v=wifu𝑹u1𝑹+𝑹v1𝑷~𝑹Aifu𝑹u1𝑹+𝑹w1𝑷~𝑹A
18 17 cbvabv v|ifu𝑹u1𝑹+𝑹v1𝑷~𝑹A=w|ifu𝑹u1𝑹+𝑹w1𝑷~𝑹A
19 1sr 1𝑹𝑹
20 19 elimel ifu𝑹u1𝑹𝑹
21 18 20 supsrlem ifu𝑹u1𝑹Ax𝑹yAy<𝑹xx𝑹yA¬x<𝑹yy𝑹y<𝑹xzAy<𝑹z
22 13 21 dedth u𝑹uAx𝑹yAy<𝑹xx𝑹yA¬x<𝑹yy𝑹y<𝑹xzAy<𝑹z
23 10 22 mpcom uAx𝑹yAy<𝑹xx𝑹yA¬x<𝑹yy𝑹y<𝑹xzAy<𝑹z
24 23 ex uAx𝑹yAy<𝑹xx𝑹yA¬x<𝑹yy𝑹y<𝑹xzAy<𝑹z
25 24 exlimiv uuAx𝑹yAy<𝑹xx𝑹yA¬x<𝑹yy𝑹y<𝑹xzAy<𝑹z
26 1 25 sylbi Ax𝑹yAy<𝑹xx𝑹yA¬x<𝑹yy𝑹y<𝑹xzAy<𝑹z
27 26 imp Ax𝑹yAy<𝑹xx𝑹yA¬x<𝑹yy𝑹y<𝑹xzAy<𝑹z