Metamath Proof Explorer


Theorem supub

Description: A supremum is an upper bound. See also supcl and suplub .

This proof demonstrates how to expand an iota-based definition ( df-iota ) using riotacl2 .

(Contributed by NM, 12-Oct-2004) (Proof shortened by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypotheses supmo.1 φROrA
supcl.2 φxAyB¬xRyyAyRxzByRz
Assertion supub φCB¬supBARRC

Proof

Step Hyp Ref Expression
1 supmo.1 φROrA
2 supcl.2 φxAyB¬xRyyAyRxzByRz
3 simpl yB¬xRyyAyRxzByRzyB¬xRy
4 3 a1i xAyB¬xRyyAyRxzByRzyB¬xRy
5 4 ss2rabi xA|yB¬xRyyAyRxzByRzxA|yB¬xRy
6 1 supval2 φsupBAR=ιxA|yB¬xRyyAyRxzByRz
7 1 2 supeu φ∃!xAyB¬xRyyAyRxzByRz
8 riotacl2 ∃!xAyB¬xRyyAyRxzByRzιxA|yB¬xRyyAyRxzByRzxA|yB¬xRyyAyRxzByRz
9 7 8 syl φιxA|yB¬xRyyAyRxzByRzxA|yB¬xRyyAyRxzByRz
10 6 9 eqeltrd φsupBARxA|yB¬xRyyAyRxzByRz
11 5 10 sselid φsupBARxA|yB¬xRy
12 breq2 y=wxRyxRw
13 12 notbid y=w¬xRy¬xRw
14 13 cbvralvw yB¬xRywB¬xRw
15 breq1 x=supBARxRwsupBARRw
16 15 notbid x=supBAR¬xRw¬supBARRw
17 16 ralbidv x=supBARwB¬xRwwB¬supBARRw
18 14 17 bitrid x=supBARyB¬xRywB¬supBARRw
19 18 elrab supBARxA|yB¬xRysupBARAwB¬supBARRw
20 19 simprbi supBARxA|yB¬xRywB¬supBARRw
21 11 20 syl φwB¬supBARRw
22 breq2 w=CsupBARRwsupBARRC
23 22 notbid w=C¬supBARRw¬supBARRC
24 23 rspccv wB¬supBARRwCB¬supBARRC
25 21 24 syl φCB¬supBARRC