Description: A supremum is an upper bound. See also supcl and suplub .
This proof demonstrates how to expand an iota-based definition ( df-iota ) using riotacl2 .
(Contributed by NM, 12-Oct-2004) (Proof shortened by Mario Carneiro, 24-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supmo.1 | |
|
supcl.2 | |
||
Assertion | supub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supmo.1 | |
|
2 | supcl.2 | |
|
3 | simpl | |
|
4 | 3 | a1i | |
5 | 4 | ss2rabi | |
6 | 1 | supval2 | |
7 | 1 2 | supeu | |
8 | riotacl2 | |
|
9 | 7 8 | syl | |
10 | 6 9 | eqeltrd | |
11 | 5 10 | sselid | |
12 | breq2 | |
|
13 | 12 | notbid | |
14 | 13 | cbvralvw | |
15 | breq1 | |
|
16 | 15 | notbid | |
17 | 16 | ralbidv | |
18 | 14 17 | bitrid | |
19 | 18 | elrab | |
20 | 19 | simprbi | |
21 | 11 20 | syl | |
22 | breq2 | |
|
23 | 22 | notbid | |
24 | 23 | rspccv | |
25 | 21 24 | syl | |