Description: The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | supxrleubrnmptf.x | |
|
supxrleubrnmptf.a | |
||
supxrleubrnmptf.n | |
||
supxrleubrnmptf.b | |
||
supxrleubrnmptf.c | |
||
Assertion | supxrleubrnmptf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supxrleubrnmptf.x | |
|
2 | supxrleubrnmptf.a | |
|
3 | supxrleubrnmptf.n | |
|
4 | supxrleubrnmptf.b | |
|
5 | supxrleubrnmptf.c | |
|
6 | nfcv | |
|
7 | nfcv | |
|
8 | nfcsb1v | |
|
9 | csbeq1a | |
|
10 | 2 6 7 8 9 | cbvmptf | |
11 | 10 | rneqi | |
12 | 11 | supeq1i | |
13 | 12 | breq1i | |
14 | 13 | a1i | |
15 | nfv | |
|
16 | 2 | nfcri | |
17 | 1 16 | nfan | |
18 | 8 | nfel1 | |
19 | 17 18 | nfim | |
20 | eleq1w | |
|
21 | 20 | anbi2d | |
22 | 9 | eleq1d | |
23 | 21 22 | imbi12d | |
24 | 19 23 4 | chvarfv | |
25 | 15 24 5 | supxrleubrnmpt | |
26 | nfcv | |
|
27 | 8 26 3 | nfbr | |
28 | nfv | |
|
29 | eqcom | |
|
30 | 29 | imbi1i | |
31 | eqcom | |
|
32 | 31 | imbi2i | |
33 | 30 32 | bitri | |
34 | 9 33 | mpbi | |
35 | 34 | breq1d | |
36 | 6 2 27 28 35 | cbvralfw | |
37 | 36 | a1i | |
38 | 14 25 37 | 3bitrd | |