Metamath Proof Explorer


Theorem supxrleubrnmptf

Description: The supremum of a nonempty bounded indexed set of extended reals is less than or equal to an upper bound. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses supxrleubrnmptf.x xφ
supxrleubrnmptf.a _xA
supxrleubrnmptf.n _xC
supxrleubrnmptf.b φxAB*
supxrleubrnmptf.c φC*
Assertion supxrleubrnmptf φsupranxAB*<CxABC

Proof

Step Hyp Ref Expression
1 supxrleubrnmptf.x xφ
2 supxrleubrnmptf.a _xA
3 supxrleubrnmptf.n _xC
4 supxrleubrnmptf.b φxAB*
5 supxrleubrnmptf.c φC*
6 nfcv _yA
7 nfcv _yB
8 nfcsb1v _xy/xB
9 csbeq1a x=yB=y/xB
10 2 6 7 8 9 cbvmptf xAB=yAy/xB
11 10 rneqi ranxAB=ranyAy/xB
12 11 supeq1i supranxAB*<=supranyAy/xB*<
13 12 breq1i supranxAB*<CsupranyAy/xB*<C
14 13 a1i φsupranxAB*<CsupranyAy/xB*<C
15 nfv yφ
16 2 nfcri xyA
17 1 16 nfan xφyA
18 8 nfel1 xy/xB*
19 17 18 nfim xφyAy/xB*
20 eleq1w x=yxAyA
21 20 anbi2d x=yφxAφyA
22 9 eleq1d x=yB*y/xB*
23 21 22 imbi12d x=yφxAB*φyAy/xB*
24 19 23 4 chvarfv φyAy/xB*
25 15 24 5 supxrleubrnmpt φsupranyAy/xB*<CyAy/xBC
26 nfcv _x
27 8 26 3 nfbr xy/xBC
28 nfv yBC
29 eqcom x=yy=x
30 29 imbi1i x=yB=y/xBy=xB=y/xB
31 eqcom B=y/xBy/xB=B
32 31 imbi2i y=xB=y/xBy=xy/xB=B
33 30 32 bitri x=yB=y/xBy=xy/xB=B
34 9 33 mpbi y=xy/xB=B
35 34 breq1d y=xy/xBCBC
36 6 2 27 28 35 cbvralfw yAy/xBCxABC
37 36 a1i φyAy/xBCxABC
38 14 25 37 3bitrd φsupranxAB*<CxABC