Metamath Proof Explorer


Theorem supxrmnf

Description: Adding minus infinity to a set does not affect its supremum. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion supxrmnf A*supA−∞*<=supA*<

Proof

Step Hyp Ref Expression
1 uncom A−∞=−∞A
2 1 supeq1i supA−∞*<=sup−∞A*<
3 mnfxr −∞*
4 snssi −∞*−∞*
5 3 4 mp1i A*−∞*
6 id A*A*
7 xrltso <Or*
8 supsn <Or*−∞*sup−∞*<=−∞
9 7 3 8 mp2an sup−∞*<=−∞
10 supxrcl A*supA*<*
11 mnfle supA*<*−∞supA*<
12 10 11 syl A*−∞supA*<
13 9 12 eqbrtrid A*sup−∞*<supA*<
14 supxrun −∞*A*sup−∞*<supA*<sup−∞A*<=supA*<
15 5 6 13 14 syl3anc A*sup−∞A*<=supA*<
16 2 15 eqtrid A*supA−∞*<=supA*<