Metamath Proof Explorer


Theorem swrdrevpfx

Description: A subword expressed in terms of reverses and prefixes. (Contributed by BTernaryTau, 3-Dec-2023)

Ref Expression
Assertion swrdrevpfx WWordVF0LL0WWsubstrFL=reversereverseWprefixLprefixLF

Proof

Step Hyp Ref Expression
1 fznn0sub2 F0LLF0L
2 pfxcl WWordVWprefixLWordV
3 revcl WprefixLWordVreverseWprefixLWordV
4 2 3 syl WWordVreverseWprefixLWordV
5 4 3ad2ant1 WWordVL0WLF0LreverseWprefixLWordV
6 simp3 WWordVL0WLF0LLF0L
7 revlen WprefixLWordVreverseWprefixL=WprefixL
8 2 7 syl WWordVreverseWprefixL=WprefixL
9 8 adantr WWordVL0WreverseWprefixL=WprefixL
10 pfxlen WWordVL0WWprefixL=L
11 9 10 eqtrd WWordVL0WreverseWprefixL=L
12 11 3adant3 WWordVL0WLF0LreverseWprefixL=L
13 12 oveq2d WWordVL0WLF0L0reverseWprefixL=0L
14 6 13 eleqtrrd WWordVL0WLF0LLF0reverseWprefixL
15 5 14 jca WWordVL0WLF0LreverseWprefixLWordVLF0reverseWprefixL
16 1 15 syl3an3 WWordVL0WF0LreverseWprefixLWordVLF0reverseWprefixL
17 16 3com23 WWordVF0LL0WreverseWprefixLWordVLF0reverseWprefixL
18 revpfxsfxrev reverseWprefixLWordVLF0reverseWprefixLreversereverseWprefixLprefixLF=reversereverseWprefixLsubstrreverseWprefixLLFreverseWprefixL
19 17 18 syl WWordVF0LL0WreversereverseWprefixLprefixLF=reversereverseWprefixLsubstrreverseWprefixLLFreverseWprefixL
20 revrev WprefixLWordVreversereverseWprefixL=WprefixL
21 2 20 syl WWordVreversereverseWprefixL=WprefixL
22 21 oveq1d WWordVreversereverseWprefixLsubstrreverseWprefixLLFreverseWprefixL=WprefixLsubstrreverseWprefixLLFreverseWprefixL
23 22 3ad2ant1 WWordVF0LL0WreversereverseWprefixLsubstrreverseWprefixLLFreverseWprefixL=WprefixLsubstrreverseWprefixLLFreverseWprefixL
24 11 oveq1d WWordVL0WreverseWprefixLLF=LLF
25 24 3adant2 WWordVF0LL0WreverseWprefixLLF=LLF
26 elfzel2 F0LL
27 26 zcnd F0LL
28 elfzelz F0LF
29 28 zcnd F0LF
30 27 29 nncand F0LLLF=F
31 30 3ad2ant2 WWordVF0LL0WLLF=F
32 25 31 eqtrd WWordVF0LL0WreverseWprefixLLF=F
33 11 3adant2 WWordVF0LL0WreverseWprefixL=L
34 32 33 opeq12d WWordVF0LL0WreverseWprefixLLFreverseWprefixL=FL
35 34 oveq2d WWordVF0LL0WWprefixLsubstrreverseWprefixLLFreverseWprefixL=WprefixLsubstrFL
36 19 23 35 3eqtrd WWordVF0LL0WreversereverseWprefixLprefixLF=WprefixLsubstrFL
37 elfzuz3 F0LLF
38 eluzfz2 LFLFL
39 37 38 syl F0LLFL
40 39 ancli F0LF0LLFL
41 40 3ad2ant2 WWordVF0LL0WF0LLFL
42 swrdpfx WWordVL0WF0LLFLWprefixLsubstrFL=WsubstrFL
43 41 42 syl5 WWordVL0WWWordVF0LL0WWprefixLsubstrFL=WsubstrFL
44 43 3adant2 WWordVF0LL0WWWordVF0LL0WWprefixLsubstrFL=WsubstrFL
45 44 pm2.43i WWordVF0LL0WWprefixLsubstrFL=WsubstrFL
46 36 45 eqtr2d WWordVF0LL0WWsubstrFL=reversereverseWprefixLprefixLF