| Step | Hyp | Ref | Expression | 
						
							| 1 |  | symggrp.1 |  | 
						
							| 2 |  | eqidd |  | 
						
							| 3 |  | eqidd |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 1 4 5 | symgcl |  | 
						
							| 7 | 6 | 3adant1 |  | 
						
							| 8 | 1 4 5 | symgcl |  | 
						
							| 9 | 1 4 5 | symgov |  | 
						
							| 10 | 8 9 | symggrplem |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 | 1 | idresperm |  | 
						
							| 13 | 1 4 5 | symgov |  | 
						
							| 14 | 12 13 | sylan |  | 
						
							| 15 | 1 4 | elsymgbas |  | 
						
							| 16 | 15 | biimpa |  | 
						
							| 17 |  | f1of |  | 
						
							| 18 |  | fcoi2 |  | 
						
							| 19 | 16 17 18 | 3syl |  | 
						
							| 20 | 14 19 | eqtrd |  | 
						
							| 21 |  | f1ocnv |  | 
						
							| 22 | 21 | a1i |  | 
						
							| 23 | 1 4 | elsymgbas |  | 
						
							| 24 | 22 15 23 | 3imtr4d |  | 
						
							| 25 | 24 | imp |  | 
						
							| 26 | 1 4 5 | symgov |  | 
						
							| 27 | 25 26 | sylancom |  | 
						
							| 28 |  | f1ococnv1 |  | 
						
							| 29 | 16 28 | syl |  | 
						
							| 30 | 27 29 | eqtrd |  | 
						
							| 31 | 2 3 7 11 12 20 25 30 | isgrpd |  |