Metamath Proof Explorer


Theorem symquadlem

Description: Lemma of the symetrial quadrilateral. The diagonals of quadrilaterals with congruent opposing sides intersect at their middle point. In Euclidean geometry, such quadrilaterals are called parallelograms, as opposing sides are parallel. However, this is not necessarily true in the case of absolute geometry. Lemma 7.21 of Schwabhauser p. 52. (Contributed by Thierry Arnoux, 6-Aug-2019)

Ref Expression
Hypotheses mirval.p P = Base G
mirval.d - ˙ = dist G
mirval.i I = Itv G
mirval.l L = Line 𝒢 G
mirval.s S = pInv 𝒢 G
mirval.g φ G 𝒢 Tarski
symquadlem.m M = S X
symquadlem.a φ A P
symquadlem.b φ B P
symquadlem.c φ C P
symquadlem.d φ D P
symquadlem.x φ X P
symquadlem.1 φ ¬ A B L C B = C
symquadlem.2 φ B D
symquadlem.3 φ A - ˙ B = C - ˙ D
symquadlem.4 φ B - ˙ C = D - ˙ A
symquadlem.5 φ X A L C A = C
symquadlem.6 φ X B L D B = D
Assertion symquadlem φ A = M C

Proof

Step Hyp Ref Expression
1 mirval.p P = Base G
2 mirval.d - ˙ = dist G
3 mirval.i I = Itv G
4 mirval.l L = Line 𝒢 G
5 mirval.s S = pInv 𝒢 G
6 mirval.g φ G 𝒢 Tarski
7 symquadlem.m M = S X
8 symquadlem.a φ A P
9 symquadlem.b φ B P
10 symquadlem.c φ C P
11 symquadlem.d φ D P
12 symquadlem.x φ X P
13 symquadlem.1 φ ¬ A B L C B = C
14 symquadlem.2 φ B D
15 symquadlem.3 φ A - ˙ B = C - ˙ D
16 symquadlem.4 φ B - ˙ C = D - ˙ A
17 symquadlem.5 φ X A L C A = C
18 symquadlem.6 φ X B L D B = D
19 1 2 3 6 9 8 tgbtwntriv2 φ A B I A
20 1 4 3 6 9 8 8 19 btwncolg1 φ A B L A B = A
21 20 adantr φ A = C A B L A B = A
22 simpr φ A = C A = C
23 22 oveq2d φ A = C B L A = B L C
24 23 eleq2d φ A = C A B L A A B L C
25 22 eqeq2d φ A = C B = A B = C
26 24 25 orbi12d φ A = C A B L A B = A A B L C B = C
27 21 26 mpbid φ A = C A B L C B = C
28 13 27 mtand φ ¬ A = C
29 28 neqned φ A C
30 29 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ A C
31 30 necomd φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ C A
32 31 neneqd φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ ¬ C = A
33 6 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ G 𝒢 Tarski
34 10 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ C P
35 8 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ A P
36 12 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ X P
37 17 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ X A L C A = C
38 1 4 3 33 35 34 36 37 colcom φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ X C L A C = A
39 9 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ B P
40 11 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ D P
41 eqid 𝒢 G = 𝒢 G
42 simplr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ x P
43 1 4 3 6 9 11 12 18 colrot2 φ D X L B X = B
44 1 4 3 6 12 9 11 43 colcom φ D B L X B = X
45 44 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ D B L X B = X
46 simpr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩
47 16 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ B - ˙ C = D - ˙ A
48 1 2 3 6 8 9 10 11 15 tgcgrcomlr φ B - ˙ A = D - ˙ C
49 48 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ B - ˙ A = D - ˙ C
50 49 eqcomd φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ D - ˙ C = B - ˙ A
51 14 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ B D
52 1 4 3 33 39 40 36 41 40 39 2 34 42 35 45 46 47 50 51 tgfscgr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ X - ˙ C = x - ˙ A
53 1 4 3 6 9 10 8 13 ncolcom φ ¬ A C L B C = B
54 53 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ ¬ A C L B C = B
55 17 orcomd φ A = C X A L C
56 55 ord φ ¬ A = C X A L C
57 28 56 mpd φ X A L C
58 57 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ X A L C
59 28 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ ¬ A = C
60 47 eqcomd φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ D - ˙ A = B - ˙ C
61 1 4 3 33 39 40 36 41 40 39 2 35 42 34 45 46 49 60 51 tgfscgr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ X - ˙ A = x - ˙ C
62 1 2 3 33 36 35 42 34 61 tgcgrcomlr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ A - ˙ X = C - ˙ x
63 1 2 3 33 34 35 axtgcgrrflx φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ C - ˙ A = A - ˙ C
64 1 2 41 33 35 36 34 34 42 35 62 52 63 trgcgr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ ⟨“ AXC ”⟩ 𝒢 G ⟨“ CxA ”⟩
65 1 4 3 33 35 36 34 41 34 42 35 37 64 lnxfr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ x C L A C = A
66 1 4 3 33 34 35 42 65 colcom φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ x A L C A = C
67 66 orcomd φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ A = C x A L C
68 67 ord φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ ¬ A = C x A L C
69 59 68 mpd φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ x A L C
70 14 neneqd φ ¬ B = D
71 18 orcomd φ B = D X B L D
72 71 ord φ ¬ B = D X B L D
73 70 72 mpd φ X B L D
74 73 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ X B L D
75 70 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ ¬ B = D
76 18 ad2antrr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ X B L D B = D
77 1 2 3 41 33 39 40 36 40 39 42 46 cgr3swap23 φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ ⟨“ BXD ”⟩ 𝒢 G ⟨“ DxB ”⟩
78 1 4 3 33 39 36 40 41 40 42 39 76 77 lnxfr φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ x D L B D = B
79 1 4 3 33 40 39 42 78 colcom φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ x B L D B = D
80 79 orcomd φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ B = D x B L D
81 80 ord φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ ¬ B = D x B L D
82 75 81 mpd φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ x B L D
83 1 3 4 33 35 34 39 40 54 58 69 74 82 tglineinteq φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ X = x
84 83 oveq1d φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ X - ˙ A = x - ˙ A
85 52 84 eqtr4d φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ X - ˙ C = X - ˙ A
86 1 2 3 4 5 33 7 34 35 36 38 85 colmid φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ A = M C C = A
87 86 orcomd φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ C = A A = M C
88 87 ord φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ ¬ C = A A = M C
89 32 88 mpd φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩ A = M C
90 1 2 3 6 9 11 axtgcgrrflx φ B - ˙ D = D - ˙ B
91 1 4 3 6 9 11 12 41 11 9 2 44 90 lnext φ x P ⟨“ BDX ”⟩ 𝒢 G ⟨“ DBx ”⟩
92 89 91 r19.29a φ A = M C