Metamath Proof Explorer


Theorem symquadlem

Description: Lemma of the symetrial quadrilateral. The diagonals of quadrilaterals with congruent opposing sides intersect at their middle point. In Euclidean geometry, such quadrilaterals are called parallelograms, as opposing sides are parallel. However, this is not necessarily true in the case of absolute geometry. Lemma 7.21 of Schwabhauser p. 52. (Contributed by Thierry Arnoux, 6-Aug-2019)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
symquadlem.m M=SX
symquadlem.a φAP
symquadlem.b φBP
symquadlem.c φCP
symquadlem.d φDP
symquadlem.x φXP
symquadlem.1 φ¬ABLCB=C
symquadlem.2 φBD
symquadlem.3 φA-˙B=C-˙D
symquadlem.4 φB-˙C=D-˙A
symquadlem.5 φXALCA=C
symquadlem.6 φXBLDB=D
Assertion symquadlem φA=MC

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 symquadlem.m M=SX
8 symquadlem.a φAP
9 symquadlem.b φBP
10 symquadlem.c φCP
11 symquadlem.d φDP
12 symquadlem.x φXP
13 symquadlem.1 φ¬ABLCB=C
14 symquadlem.2 φBD
15 symquadlem.3 φA-˙B=C-˙D
16 symquadlem.4 φB-˙C=D-˙A
17 symquadlem.5 φXALCA=C
18 symquadlem.6 φXBLDB=D
19 1 2 3 6 9 8 tgbtwntriv2 φABIA
20 1 4 3 6 9 8 8 19 btwncolg1 φABLAB=A
21 20 adantr φA=CABLAB=A
22 simpr φA=CA=C
23 22 oveq2d φA=CBLA=BLC
24 23 eleq2d φA=CABLAABLC
25 22 eqeq2d φA=CB=AB=C
26 24 25 orbi12d φA=CABLAB=AABLCB=C
27 21 26 mpbid φA=CABLCB=C
28 13 27 mtand φ¬A=C
29 28 neqned φAC
30 29 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩AC
31 30 necomd φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩CA
32 31 neneqd φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩¬C=A
33 6 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩G𝒢Tarski
34 10 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩CP
35 8 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩AP
36 12 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩XP
37 17 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩XALCA=C
38 1 4 3 33 35 34 36 37 colcom φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩XCLAC=A
39 9 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩BP
40 11 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩DP
41 eqid 𝒢G=𝒢G
42 simplr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩xP
43 1 4 3 6 9 11 12 18 colrot2 φDXLBX=B
44 1 4 3 6 12 9 11 43 colcom φDBLXB=X
45 44 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩DBLXB=X
46 simpr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩⟨“BDX”⟩𝒢G⟨“DBx”⟩
47 16 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩B-˙C=D-˙A
48 1 2 3 6 8 9 10 11 15 tgcgrcomlr φB-˙A=D-˙C
49 48 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩B-˙A=D-˙C
50 49 eqcomd φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩D-˙C=B-˙A
51 14 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩BD
52 1 4 3 33 39 40 36 41 40 39 2 34 42 35 45 46 47 50 51 tgfscgr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩X-˙C=x-˙A
53 1 4 3 6 9 10 8 13 ncolcom φ¬ACLBC=B
54 53 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩¬ACLBC=B
55 17 orcomd φA=CXALC
56 55 ord φ¬A=CXALC
57 28 56 mpd φXALC
58 57 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩XALC
59 28 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩¬A=C
60 47 eqcomd φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩D-˙A=B-˙C
61 1 4 3 33 39 40 36 41 40 39 2 35 42 34 45 46 49 60 51 tgfscgr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩X-˙A=x-˙C
62 1 2 3 33 36 35 42 34 61 tgcgrcomlr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩A-˙X=C-˙x
63 1 2 3 33 34 35 axtgcgrrflx φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩C-˙A=A-˙C
64 1 2 41 33 35 36 34 34 42 35 62 52 63 trgcgr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩⟨“AXC”⟩𝒢G⟨“CxA”⟩
65 1 4 3 33 35 36 34 41 34 42 35 37 64 lnxfr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩xCLAC=A
66 1 4 3 33 34 35 42 65 colcom φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩xALCA=C
67 66 orcomd φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩A=CxALC
68 67 ord φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩¬A=CxALC
69 59 68 mpd φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩xALC
70 14 neneqd φ¬B=D
71 18 orcomd φB=DXBLD
72 71 ord φ¬B=DXBLD
73 70 72 mpd φXBLD
74 73 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩XBLD
75 70 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩¬B=D
76 18 ad2antrr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩XBLDB=D
77 1 2 3 41 33 39 40 36 40 39 42 46 cgr3swap23 φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩⟨“BXD”⟩𝒢G⟨“DxB”⟩
78 1 4 3 33 39 36 40 41 40 42 39 76 77 lnxfr φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩xDLBD=B
79 1 4 3 33 40 39 42 78 colcom φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩xBLDB=D
80 79 orcomd φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩B=DxBLD
81 80 ord φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩¬B=DxBLD
82 75 81 mpd φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩xBLD
83 1 3 4 33 35 34 39 40 54 58 69 74 82 tglineinteq φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩X=x
84 83 oveq1d φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩X-˙A=x-˙A
85 52 84 eqtr4d φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩X-˙C=X-˙A
86 1 2 3 4 5 33 7 34 35 36 38 85 colmid φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩A=MCC=A
87 86 orcomd φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩C=AA=MC
88 87 ord φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩¬C=AA=MC
89 32 88 mpd φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩A=MC
90 1 2 3 6 9 11 axtgcgrrflx φB-˙D=D-˙B
91 1 4 3 6 9 11 12 41 11 9 2 44 90 lnext φxP⟨“BDX”⟩𝒢G⟨“DBx”⟩
92 89 91 r19.29a φA=MC