Description: A variant of the definition of the transitive closure function, using instead the smallest transitive set containing A as a member, gives almost the same set, except that A itself must be added because it is not usually a member of ( TCA ) (and it is never a member if A is well-founded). (Contributed by Mario Carneiro, 23-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tc2.1 | |
|
Assertion | tc2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tc2.1 | |
|
2 | tcvalg | |
|
3 | 1 2 | ax-mp | |
4 | trss | |
|
5 | 4 | imdistanri | |
6 | 5 | ss2abi | |
7 | intss | |
|
8 | 6 7 | ax-mp | |
9 | 3 8 | eqsstri | |
10 | 1 | elintab | |
11 | simpl | |
|
12 | 10 11 | mpgbir | |
13 | 1 | snss | |
14 | 12 13 | mpbi | |
15 | 9 14 | unssi | |
16 | 1 | snid | |
17 | elun2 | |
|
18 | 16 17 | ax-mp | |
19 | uniun | |
|
20 | tctr | |
|
21 | df-tr | |
|
22 | 20 21 | mpbi | |
23 | 1 | unisn | |
24 | tcid | |
|
25 | 1 24 | ax-mp | |
26 | 23 25 | eqsstri | |
27 | 22 26 | unssi | |
28 | 19 27 | eqsstri | |
29 | ssun1 | |
|
30 | 28 29 | sstri | |
31 | df-tr | |
|
32 | 30 31 | mpbir | |
33 | fvex | |
|
34 | snex | |
|
35 | 33 34 | unex | |
36 | eleq2 | |
|
37 | treq | |
|
38 | 36 37 | anbi12d | |
39 | 35 38 | elab | |
40 | 18 32 39 | mpbir2an | |
41 | intss1 | |
|
42 | 40 41 | ax-mp | |
43 | 15 42 | eqssi | |