Metamath Proof Explorer


Theorem tc2

Description: A variant of the definition of the transitive closure function, using instead the smallest transitive set containing A as a member, gives almost the same set, except that A itself must be added because it is not usually a member of ( TCA ) (and it is never a member if A is well-founded). (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Hypothesis tc2.1 AV
Assertion tc2 TCAA=x|AxTrx

Proof

Step Hyp Ref Expression
1 tc2.1 AV
2 tcvalg AVTCA=x|AxTrx
3 1 2 ax-mp TCA=x|AxTrx
4 trss TrxAxAx
5 4 imdistanri AxTrxAxTrx
6 5 ss2abi x|AxTrxx|AxTrx
7 intss x|AxTrxx|AxTrxx|AxTrxx|AxTrx
8 6 7 ax-mp x|AxTrxx|AxTrx
9 3 8 eqsstri TCAx|AxTrx
10 1 elintab Ax|AxTrxxAxTrxAx
11 simpl AxTrxAx
12 10 11 mpgbir Ax|AxTrx
13 1 snss Ax|AxTrxAx|AxTrx
14 12 13 mpbi Ax|AxTrx
15 9 14 unssi TCAAx|AxTrx
16 1 snid AA
17 elun2 AAATCAA
18 16 17 ax-mp ATCAA
19 uniun TCAA=TCAA
20 tctr TrTCA
21 df-tr TrTCATCATCA
22 20 21 mpbi TCATCA
23 1 unisn A=A
24 tcid AVATCA
25 1 24 ax-mp ATCA
26 23 25 eqsstri ATCA
27 22 26 unssi TCAATCA
28 19 27 eqsstri TCAATCA
29 ssun1 TCATCAA
30 28 29 sstri TCAATCAA
31 df-tr TrTCAATCAATCAA
32 30 31 mpbir TrTCAA
33 fvex TCAV
34 snex AV
35 33 34 unex TCAAV
36 eleq2 x=TCAAAxATCAA
37 treq x=TCAATrxTrTCAA
38 36 37 anbi12d x=TCAAAxTrxATCAATrTCAA
39 35 38 elab TCAAx|AxTrxATCAATrTCAA
40 18 32 39 mpbir2an TCAAx|AxTrx
41 intss1 TCAAx|AxTrxx|AxTrxTCAA
42 40 41 ax-mp x|AxTrxTCAA
43 15 42 eqssi TCAA=x|AxTrx