Metamath Proof Explorer


Theorem tcmin

Description: Defining property of the transitive closure function: it is a subset of any transitive class containing A . (Contributed by Mario Carneiro, 23-Jun-2013)

Ref Expression
Assertion tcmin AVABTrBTCAB

Proof

Step Hyp Ref Expression
1 tcvalg AVTCA=x|AxTrx
2 fvex TCAV
3 1 2 eqeltrrdi AVx|AxTrxV
4 intexab xAxTrxx|AxTrxV
5 3 4 sylibr AVxAxTrx
6 ssin AxABAxB
7 6 biimpi AxABAxB
8 trin TrxTrBTrxB
9 7 8 anim12i AxABTrxTrBAxBTrxB
10 9 an4s AxTrxABTrBAxBTrxB
11 10 expcom ABTrBAxTrxAxBTrxB
12 vex xV
13 12 inex1 xBV
14 sseq2 y=xBAyAxB
15 treq y=xBTryTrxB
16 14 15 anbi12d y=xBAyTryAxBTrxB
17 13 16 elab xBy|AyTryAxBTrxB
18 intss1 xBy|AyTryy|AyTryxB
19 17 18 sylbir AxBTrxBy|AyTryxB
20 inss2 xBB
21 19 20 sstrdi AxBTrxBy|AyTryB
22 11 21 syl6 ABTrBAxTrxy|AyTryB
23 22 exlimdv ABTrBxAxTrxy|AyTryB
24 5 23 syl5com AVABTrBy|AyTryB
25 tcvalg AVTCA=y|AyTry
26 25 sseq1d AVTCABy|AyTryB
27 24 26 sylibrd AVABTrBTCAB