Metamath Proof Explorer


Theorem tendoeq2

Description: Condition determining equality of two trace-preserving endomorphisms, showing it is unnecessary to consider the identity translation. In tendocan , we show that we only need to consider a single non-identity translation. (Contributed by NM, 21-Jun-2013)

Ref Expression
Hypotheses tendoeq2.b B=BaseK
tendoeq2.h H=LHypK
tendoeq2.t T=LTrnKW
tendoeq2.e E=TEndoKW
Assertion tendoeq2 KHLWHUEVEfTfIBUf=VfU=V

Proof

Step Hyp Ref Expression
1 tendoeq2.b B=BaseK
2 tendoeq2.h H=LHypK
3 tendoeq2.t T=LTrnKW
4 tendoeq2.e E=TEndoKW
5 1 2 4 tendoid KHLWHUEUIB=IB
6 5 adantrr KHLWHUEVEUIB=IB
7 1 2 4 tendoid KHLWHVEVIB=IB
8 7 adantrl KHLWHUEVEVIB=IB
9 6 8 eqtr4d KHLWHUEVEUIB=VIB
10 fveq2 f=IBUf=UIB
11 fveq2 f=IBVf=VIB
12 10 11 eqeq12d f=IBUf=VfUIB=VIB
13 9 12 syl5ibrcom KHLWHUEVEf=IBUf=Vf
14 13 ralrimivw KHLWHUEVEfTf=IBUf=Vf
15 r19.26 fTf=IBUf=VffIBUf=VffTf=IBUf=VffTfIBUf=Vf
16 jaob f=IBfIBUf=Vff=IBUf=VffIBUf=Vf
17 exmidne f=IBfIB
18 pm5.5 f=IBfIBf=IBfIBUf=VfUf=Vf
19 17 18 ax-mp f=IBfIBUf=VfUf=Vf
20 16 19 bitr3i f=IBUf=VffIBUf=VfUf=Vf
21 20 ralbii fTf=IBUf=VffIBUf=VffTUf=Vf
22 15 21 bitr3i fTf=IBUf=VffTfIBUf=VffTUf=Vf
23 2 3 4 tendoeq1 KHLWHUEVEfTUf=VfU=V
24 23 3expia KHLWHUEVEfTUf=VfU=V
25 22 24 biimtrid KHLWHUEVEfTf=IBUf=VffTfIBUf=VfU=V
26 14 25 mpand KHLWHUEVEfTfIBUf=VfU=V
27 26 3impia KHLWHUEVEfTfIBUf=VfU=V