Metamath Proof Explorer


Theorem tfrlem8

Description: Lemma for transfinite recursion. The domain of recs is an ordinal. (Contributed by NM, 14-Aug-1994) (Proof shortened by Alan Sare, 11-Mar-2008)

Ref Expression
Hypothesis tfrlem.1 A=f|xOnfFnxyxfy=Ffy
Assertion tfrlem8 OrddomrecsF

Proof

Step Hyp Ref Expression
1 tfrlem.1 A=f|xOnfFnxyxfy=Ffy
2 1 tfrlem3 A=g|zOngFnzwzgw=Fgw
3 2 eqabri gAzOngFnzwzgw=Fgw
4 fndm gFnzdomg=z
5 4 adantr gFnzwzgw=Fgwdomg=z
6 5 eleq1d gFnzwzgw=FgwdomgOnzOn
7 6 biimprcd zOngFnzwzgw=FgwdomgOn
8 7 rexlimiv zOngFnzwzgw=FgwdomgOn
9 3 8 sylbi gAdomgOn
10 eleq1a domgOnz=domgzOn
11 9 10 syl gAz=domgzOn
12 11 rexlimiv gAz=domgzOn
13 12 abssi z|gAz=domgOn
14 ssorduni z|gAz=domgOnOrdz|gAz=domg
15 13 14 ax-mp Ordz|gAz=domg
16 1 recsfval recsF=A
17 16 dmeqi domrecsF=domA
18 dmuni domA=gAdomg
19 vex gV
20 19 dmex domgV
21 20 dfiun2 gAdomg=z|gAz=domg
22 17 18 21 3eqtri domrecsF=z|gAz=domg
23 ordeq domrecsF=z|gAz=domgOrddomrecsFOrdz|gAz=domg
24 22 23 ax-mp OrddomrecsFOrdz|gAz=domg
25 15 24 mpbir OrddomrecsF