Description: Two distinct lines intersect in at most one point. Theorem 6.21 of Schwabhauser p. 46. (Contributed by Thierry Arnoux, 25-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tglineintmo.p | |
|
tglineintmo.i | |
||
tglineintmo.l | |
||
tglineintmo.g | |
||
tglineintmo.a | |
||
tglineintmo.b | |
||
tglineintmo.c | |
||
Assertion | tglineintmo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineintmo.p | |
|
2 | tglineintmo.i | |
|
3 | tglineintmo.l | |
|
4 | tglineintmo.g | |
|
5 | tglineintmo.a | |
|
6 | tglineintmo.b | |
|
7 | tglineintmo.c | |
|
8 | 4 | ad2antrr | |
9 | elssuni | |
|
10 | 5 9 | syl | |
11 | 1 3 2 | tglnunirn | |
12 | 4 11 | syl | |
13 | 10 12 | sstrd | |
14 | 13 | ad2antrr | |
15 | simplrl | |
|
16 | 15 | simpld | |
17 | 14 16 | sseldd | |
18 | simplrr | |
|
19 | 18 | simpld | |
20 | 14 19 | sseldd | |
21 | simpr | |
|
22 | 5 | ad2antrr | |
23 | 1 2 3 8 17 20 21 21 22 16 19 | tglinethru | |
24 | 6 | ad2antrr | |
25 | 15 | simprd | |
26 | 18 | simprd | |
27 | 1 2 3 8 17 20 21 21 24 25 26 | tglinethru | |
28 | 23 27 | eqtr4d | |
29 | 7 | ad2antrr | |
30 | 29 | neneqd | |
31 | 28 30 | pm2.65da | |
32 | nne | |
|
33 | 31 32 | sylib | |
34 | 33 | ex | |
35 | 34 | alrimivv | |
36 | eleq1w | |
|
37 | eleq1w | |
|
38 | 36 37 | anbi12d | |
39 | 38 | mo4 | |
40 | 35 39 | sylibr | |