Metamath Proof Explorer


Theorem tmsxpsval2

Description: Value of the product of two metrics. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses tmsxps.p P=disttoMetSpM×𝑠toMetSpN
tmsxps.1 φM∞MetX
tmsxps.2 φN∞MetY
tmsxpsval.a φAX
tmsxpsval.b φBY
tmsxpsval.c φCX
tmsxpsval.d φDY
Assertion tmsxpsval2 φABPCD=ifAMCBNDBNDAMC

Proof

Step Hyp Ref Expression
1 tmsxps.p P=disttoMetSpM×𝑠toMetSpN
2 tmsxps.1 φM∞MetX
3 tmsxps.2 φN∞MetY
4 tmsxpsval.a φAX
5 tmsxpsval.b φBY
6 tmsxpsval.c φCX
7 tmsxpsval.d φDY
8 1 2 3 4 5 6 7 tmsxpsval φABPCD=supAMCBND*<
9 xrltso <Or*
10 xmetcl M∞MetXAXCXAMC*
11 2 4 6 10 syl3anc φAMC*
12 xmetcl N∞MetYBYDYBND*
13 3 5 7 12 syl3anc φBND*
14 suppr <Or*AMC*BND*supAMCBND*<=ifBND<AMCAMCBND
15 9 11 13 14 mp3an2i φsupAMCBND*<=ifBND<AMCAMCBND
16 xrltnle BND*AMC*BND<AMC¬AMCBND
17 13 11 16 syl2anc φBND<AMC¬AMCBND
18 17 ifbid φifBND<AMCAMCBND=if¬AMCBNDAMCBND
19 ifnot if¬AMCBNDAMCBND=ifAMCBNDBNDAMC
20 18 19 eqtrdi φifBND<AMCAMCBND=ifAMCBNDBNDAMC
21 8 15 20 3eqtrd φABPCD=ifAMCBNDBNDAMC