Metamath Proof Explorer


Theorem topssnei

Description: A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015)

Ref Expression
Hypotheses tpnei.1 X=J
topssnei.2 Y=K
Assertion topssnei JTopKTopX=YJKneiJSneiKS

Proof

Step Hyp Ref Expression
1 tpnei.1 X=J
2 topssnei.2 Y=K
3 simpl2 JTopKTopX=YJKxneiJSKTop
4 simprl JTopKTopX=YJKxneiJSJK
5 simpl1 JTopKTopX=YJKxneiJSJTop
6 simprr JTopKTopX=YJKxneiJSxneiJS
7 1 neii1 JTopxneiJSxX
8 5 6 7 syl2anc JTopKTopX=YJKxneiJSxX
9 1 ntropn JTopxXintJxJ
10 5 8 9 syl2anc JTopKTopX=YJKxneiJSintJxJ
11 4 10 sseldd JTopKTopX=YJKxneiJSintJxK
12 1 neiss2 JTopxneiJSSX
13 5 6 12 syl2anc JTopKTopX=YJKxneiJSSX
14 1 neiint JTopSXxXxneiJSSintJx
15 5 13 8 14 syl3anc JTopKTopX=YJKxneiJSxneiJSSintJx
16 6 15 mpbid JTopKTopX=YJKxneiJSSintJx
17 opnneiss KTopintJxKSintJxintJxneiKS
18 3 11 16 17 syl3anc JTopKTopX=YJKxneiJSintJxneiKS
19 1 ntrss2 JTopxXintJxx
20 5 8 19 syl2anc JTopKTopX=YJKxneiJSintJxx
21 simpl3 JTopKTopX=YJKxneiJSX=Y
22 8 21 sseqtrd JTopKTopX=YJKxneiJSxY
23 2 ssnei2 KTopintJxneiKSintJxxxYxneiKS
24 3 18 20 22 23 syl22anc JTopKTopX=YJKxneiJSxneiKS
25 24 expr JTopKTopX=YJKxneiJSxneiKS
26 25 ssrdv JTopKTopX=YJKneiJSneiKS