Description: Same theorem as toslub , for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018) (Revised by AV, 28-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tosglb.b | |
|
tosglb.l | |
||
tosglb.1 | |
||
tosglb.2 | |
||
Assertion | tosglb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tosglb.b | |
|
2 | tosglb.l | |
|
3 | tosglb.1 | |
|
4 | tosglb.2 | |
|
5 | eqid | |
|
6 | 1 2 3 4 5 | tosglblem | |
7 | 6 | riotabidva | |
8 | eqid | |
|
9 | biid | |
|
10 | 1 5 8 9 3 4 | glbval | |
11 | 1 5 2 | tosso | |
12 | 11 | ibi | |
13 | 12 | simpld | |
14 | cnvso | |
|
15 | 13 14 | sylib | |
16 | id | |
|
17 | 16 | supval2 | |
18 | 3 15 17 | 3syl | |
19 | 7 10 18 | 3eqtr4d | |
20 | df-inf | |
|
21 | 20 | eqcomi | |
22 | 21 | a1i | |
23 | 19 22 | eqtrd | |