Metamath Proof Explorer


Theorem tosglb

Description: Same theorem as toslub , for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018) (Revised by AV, 28-Sep-2020)

Ref Expression
Hypotheses tosglb.b B=BaseK
tosglb.l <˙=<K
tosglb.1 φKToset
tosglb.2 φAB
Assertion tosglb φglbKA=supAB<˙

Proof

Step Hyp Ref Expression
1 tosglb.b B=BaseK
2 tosglb.l <˙=<K
3 tosglb.1 φKToset
4 tosglb.2 φAB
5 eqid K=K
6 1 2 3 4 5 tosglblem φaBbAaKbcBbAcKbcKabA¬a<˙-1bbBb<˙-1adAb<˙-1d
7 6 riotabidva φιaB|bAaKbcBbAcKbcKa=ιaB|bA¬a<˙-1bbBb<˙-1adAb<˙-1d
8 eqid glbK=glbK
9 biid bAaKbcBbAcKbcKabAaKbcBbAcKbcKa
10 1 5 8 9 3 4 glbval φglbKA=ιaB|bAaKbcBbAcKbcKa
11 1 5 2 tosso KTosetKToset<˙OrBIBK
12 11 ibi KToset<˙OrBIBK
13 12 simpld KToset<˙OrB
14 cnvso <˙OrB<˙-1OrB
15 13 14 sylib KToset<˙-1OrB
16 id <˙-1OrB<˙-1OrB
17 16 supval2 <˙-1OrBsupAB<˙-1=ιaB|bA¬a<˙-1bbBb<˙-1adAb<˙-1d
18 3 15 17 3syl φsupAB<˙-1=ιaB|bA¬a<˙-1bbBb<˙-1adAb<˙-1d
19 7 10 18 3eqtr4d φglbKA=supAB<˙-1
20 df-inf supAB<˙=supAB<˙-1
21 20 eqcomi supAB<˙-1=supAB<˙
22 21 a1i φsupAB<˙-1=supAB<˙
23 19 22 eqtrd φglbKA=supAB<˙