Metamath Proof Explorer


Theorem transportprops

Description: Calculate the defining properties of the transport function. (Contributed by Scott Fenton, 19-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion transportprops N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D D Btwn C A B TransportTo C D D A B TransportTo C D Cgr A B

Proof

Step Hyp Ref Expression
1 fvtransport N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D A B TransportTo C D = ι r 𝔼 N | D Btwn C r D r Cgr A B
2 1 eqcomd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D ι r 𝔼 N | D Btwn C r D r Cgr A B = A B TransportTo C D
3 transportcl N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D A B TransportTo C D 𝔼 N
4 segconeu N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D ∃! r 𝔼 N D Btwn C r D r Cgr A B
5 opeq2 r = A B TransportTo C D C r = C A B TransportTo C D
6 5 breq2d r = A B TransportTo C D D Btwn C r D Btwn C A B TransportTo C D
7 opeq2 r = A B TransportTo C D D r = D A B TransportTo C D
8 7 breq1d r = A B TransportTo C D D r Cgr A B D A B TransportTo C D Cgr A B
9 6 8 anbi12d r = A B TransportTo C D D Btwn C r D r Cgr A B D Btwn C A B TransportTo C D D A B TransportTo C D Cgr A B
10 9 riota2 A B TransportTo C D 𝔼 N ∃! r 𝔼 N D Btwn C r D r Cgr A B D Btwn C A B TransportTo C D D A B TransportTo C D Cgr A B ι r 𝔼 N | D Btwn C r D r Cgr A B = A B TransportTo C D
11 3 4 10 syl2anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D D Btwn C A B TransportTo C D D A B TransportTo C D Cgr A B ι r 𝔼 N | D Btwn C r D r Cgr A B = A B TransportTo C D
12 2 11 mpbird N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D D Btwn C A B TransportTo C D D A B TransportTo C D Cgr A B