Metamath Proof Explorer


Theorem trcfilu

Description: Condition for the trace of a Cauchy filter base to be a Cauchy filter base for the restricted uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018)

Ref Expression
Assertion trcfilu U UnifOn X F CauFilU U ¬ F 𝑡 A A X F 𝑡 A CauFilU U 𝑡 A × A

Proof

Step Hyp Ref Expression
1 simp1 U UnifOn X F CauFilU U ¬ F 𝑡 A A X U UnifOn X
2 simp2l U UnifOn X F CauFilU U ¬ F 𝑡 A A X F CauFilU U
3 iscfilu U UnifOn X F CauFilU U F fBas X v U a F a × a v
4 3 biimpa U UnifOn X F CauFilU U F fBas X v U a F a × a v
5 1 2 4 syl2anc U UnifOn X F CauFilU U ¬ F 𝑡 A A X F fBas X v U a F a × a v
6 5 simpld U UnifOn X F CauFilU U ¬ F 𝑡 A A X F fBas X
7 simp3 U UnifOn X F CauFilU U ¬ F 𝑡 A A X A X
8 simp2r U UnifOn X F CauFilU U ¬ F 𝑡 A A X ¬ F 𝑡 A
9 trfbas2 F fBas X A X F 𝑡 A fBas A ¬ F 𝑡 A
10 9 biimpar F fBas X A X ¬ F 𝑡 A F 𝑡 A fBas A
11 6 7 8 10 syl21anc U UnifOn X F CauFilU U ¬ F 𝑡 A A X F 𝑡 A fBas A
12 2 ad5antr U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A v U w = v A × A a F a × a v F CauFilU U
13 1 adantr U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A U UnifOn X
14 13 elfvexd U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A X V
15 7 adantr U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A A X
16 14 15 ssexd U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A A V
17 16 ad4antr U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A v U w = v A × A a F a × a v A V
18 simplr U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A v U w = v A × A a F a × a v a F
19 elrestr F CauFilU U A V a F a A F 𝑡 A
20 12 17 18 19 syl3anc U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A v U w = v A × A a F a × a v a A F 𝑡 A
21 inxp a × a A × A = a A × a A
22 simpr U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A v U w = v A × A a F a × a v a × a v
23 22 ssrind U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A v U w = v A × A a F a × a v a × a A × A v A × A
24 simpllr U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A v U w = v A × A a F a × a v w = v A × A
25 23 24 sseqtrrd U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A v U w = v A × A a F a × a v a × a A × A w
26 21 25 eqsstrrid U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A v U w = v A × A a F a × a v a A × a A w
27 id b = a A b = a A
28 27 sqxpeqd b = a A b × b = a A × a A
29 28 sseq1d b = a A b × b w a A × a A w
30 29 rspcev a A F 𝑡 A a A × a A w b F 𝑡 A b × b w
31 20 26 30 syl2anc U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A v U w = v A × A a F a × a v b F 𝑡 A b × b w
32 5 simprd U UnifOn X F CauFilU U ¬ F 𝑡 A A X v U a F a × a v
33 32 r19.21bi U UnifOn X F CauFilU U ¬ F 𝑡 A A X v U a F a × a v
34 33 ad4ant13 U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A v U w = v A × A a F a × a v
35 31 34 r19.29a U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A v U w = v A × A b F 𝑡 A b × b w
36 16 16 xpexd U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A A × A V
37 simpr U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A w U 𝑡 A × A
38 elrest U UnifOn X A × A V w U 𝑡 A × A v U w = v A × A
39 38 biimpa U UnifOn X A × A V w U 𝑡 A × A v U w = v A × A
40 13 36 37 39 syl21anc U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A v U w = v A × A
41 35 40 r19.29a U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A b F 𝑡 A b × b w
42 41 ralrimiva U UnifOn X F CauFilU U ¬ F 𝑡 A A X w U 𝑡 A × A b F 𝑡 A b × b w
43 trust U UnifOn X A X U 𝑡 A × A UnifOn A
44 1 7 43 syl2anc U UnifOn X F CauFilU U ¬ F 𝑡 A A X U 𝑡 A × A UnifOn A
45 iscfilu U 𝑡 A × A UnifOn A F 𝑡 A CauFilU U 𝑡 A × A F 𝑡 A fBas A w U 𝑡 A × A b F 𝑡 A b × b w
46 44 45 syl U UnifOn X F CauFilU U ¬ F 𝑡 A A X F 𝑡 A CauFilU U 𝑡 A × A F 𝑡 A fBas A w U 𝑡 A × A b F 𝑡 A b × b w
47 11 42 46 mpbir2and U UnifOn X F CauFilU U ¬ F 𝑡 A A X F 𝑡 A CauFilU U 𝑡 A × A