| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unss |  | 
						
							| 2 |  | simpl |  | 
						
							| 3 | 1 2 | sylbir |  | 
						
							| 4 |  | vex |  | 
						
							| 5 |  | trcleq2lem |  | 
						
							| 6 | 4 5 | elab |  | 
						
							| 7 | 6 | biimpri |  | 
						
							| 8 | 3 7 | sylan |  | 
						
							| 9 |  | intss1 |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 | 1 11 | sylbir |  | 
						
							| 13 |  | trcleq2lem |  | 
						
							| 14 | 4 13 | elab |  | 
						
							| 15 | 14 | biimpri |  | 
						
							| 16 | 12 15 | sylan |  | 
						
							| 17 |  | intss1 |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 | 10 18 | unssd |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 | 19 20 | jca |  | 
						
							| 22 |  | ssmin |  | 
						
							| 23 |  | ssmin |  | 
						
							| 24 |  | unss12 |  | 
						
							| 25 | 22 23 24 | mp2an |  | 
						
							| 26 |  | sstr |  | 
						
							| 27 | 25 26 | mpan |  | 
						
							| 28 | 27 | anim1i |  | 
						
							| 29 | 21 28 | impbii |  | 
						
							| 30 | 29 | abbii |  | 
						
							| 31 | 30 | inteqi |  | 
						
							| 32 |  | unexg |  | 
						
							| 33 |  | trclfv |  | 
						
							| 34 | 32 33 | syl |  | 
						
							| 35 |  | simpl |  | 
						
							| 36 |  | trclfv |  | 
						
							| 37 | 35 36 | syl |  | 
						
							| 38 |  | simpr |  | 
						
							| 39 |  | trclfv |  | 
						
							| 40 | 38 39 | syl |  | 
						
							| 41 | 37 40 | uneq12d |  | 
						
							| 42 | 41 | fveq2d |  | 
						
							| 43 |  | fvex |  | 
						
							| 44 | 36 43 | eqeltrrdi |  | 
						
							| 45 |  | fvex |  | 
						
							| 46 | 39 45 | eqeltrrdi |  | 
						
							| 47 |  | unexg |  | 
						
							| 48 | 44 46 47 | syl2an |  | 
						
							| 49 |  | trclfv |  | 
						
							| 50 | 48 49 | syl |  | 
						
							| 51 | 42 50 | eqtrd |  | 
						
							| 52 | 31 34 51 | 3eqtr4a |  |