Metamath Proof Explorer


Theorem trclun

Description: Transitive closure of a union of relations. (Contributed by RP, 5-May-2020)

Ref Expression
Assertion trclun RVSWt+RS=t+t+Rt+S

Proof

Step Hyp Ref Expression
1 unss RxSxRSx
2 simpl RxSxRx
3 1 2 sylbir RSxRx
4 vex xV
5 trcleq2lem r=xRrrrrRxxxx
6 4 5 elab xr|RrrrrRxxxx
7 6 biimpri Rxxxxxr|Rrrrr
8 3 7 sylan RSxxxxxr|Rrrrr
9 intss1 xr|Rrrrrr|Rrrrrx
10 8 9 syl RSxxxxr|Rrrrrx
11 simpr RxSxSx
12 1 11 sylbir RSxSx
13 trcleq2lem s=xSssssSxxxx
14 4 13 elab xs|SssssSxxxx
15 14 biimpri Sxxxxxs|Sssss
16 12 15 sylan RSxxxxxs|Sssss
17 intss1 xs|Ssssss|Sssssx
18 16 17 syl RSxxxxs|Sssssx
19 10 18 unssd RSxxxxr|Rrrrrs|Sssssx
20 simpr RSxxxxxxx
21 19 20 jca RSxxxxr|Rrrrrs|Sssssxxxx
22 ssmin Rr|Rrrrr
23 ssmin Ss|Sssss
24 unss12 Rr|RrrrrSs|SssssRSr|Rrrrrs|Sssss
25 22 23 24 mp2an RSr|Rrrrrs|Sssss
26 sstr RSr|Rrrrrs|Sssssr|Rrrrrs|SssssxRSx
27 25 26 mpan r|Rrrrrs|SssssxRSx
28 27 anim1i r|Rrrrrs|SssssxxxxRSxxxx
29 21 28 impbii RSxxxxr|Rrrrrs|Sssssxxxx
30 29 abbii x|RSxxxx=x|r|Rrrrrs|Sssssxxxx
31 30 inteqi x|RSxxxx=x|r|Rrrrrs|Sssssxxxx
32 unexg RVSWRSV
33 trclfv RSVt+RS=x|RSxxxx
34 32 33 syl RVSWt+RS=x|RSxxxx
35 simpl RVSWRV
36 trclfv RVt+R=r|Rrrrr
37 35 36 syl RVSWt+R=r|Rrrrr
38 simpr RVSWSW
39 trclfv SWt+S=s|Sssss
40 38 39 syl RVSWt+S=s|Sssss
41 37 40 uneq12d RVSWt+Rt+S=r|Rrrrrs|Sssss
42 41 fveq2d RVSWt+t+Rt+S=t+r|Rrrrrs|Sssss
43 fvex t+RV
44 36 43 eqeltrrdi RVr|RrrrrV
45 fvex t+SV
46 39 45 eqeltrrdi SWs|SssssV
47 unexg r|RrrrrVs|SssssVr|Rrrrrs|SssssV
48 44 46 47 syl2an RVSWr|Rrrrrs|SssssV
49 trclfv r|Rrrrrs|SssssVt+r|Rrrrrs|Sssss=x|r|Rrrrrs|Sssssxxxx
50 48 49 syl RVSWt+r|Rrrrrs|Sssss=x|r|Rrrrrs|Sssssxxxx
51 42 50 eqtrd RVSWt+t+Rt+S=x|r|Rrrrrs|Sssssxxxx
52 31 34 51 3eqtr4a RVSWt+RS=t+t+Rt+S