Metamath Proof Explorer


Theorem trfil1

Description: Conditions for the trace of a filter L to be a filter. (Contributed by FL, 2-Sep-2013) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion trfil1 LFilYAYA=L𝑡A

Proof

Step Hyp Ref Expression
1 simpr LFilYAYAY
2 sseqin2 AYYA=A
3 1 2 sylib LFilYAYYA=A
4 simpl LFilYAYLFilY
5 id AYAY
6 filtop LFilYYL
7 ssexg AYYLAV
8 5 6 7 syl2anr LFilYAYAV
9 6 adantr LFilYAYYL
10 elrestr LFilYAVYLYAL𝑡A
11 4 8 9 10 syl3anc LFilYAYYAL𝑡A
12 3 11 eqeltrrd LFilYAYAL𝑡A
13 elssuni AL𝑡AAL𝑡A
14 12 13 syl LFilYAYAL𝑡A
15 restsspw L𝑡A𝒫A
16 sspwuni L𝑡A𝒫AL𝑡AA
17 15 16 mpbi L𝑡AA
18 17 a1i LFilYAYL𝑡AA
19 14 18 eqssd LFilYAYA=L𝑡A