Metamath Proof Explorer


Theorem trgcopyeu

Description: Triangle construction: a copy of a given triangle can always be constructed in such a way that one side is lying on a half-line, and the third vertex is on a given half-plane: uniqueness part. Second part of Theorem 10.16 of Schwabhauser p. 92. (Contributed by Thierry Arnoux, 8-Aug-2020)

Ref Expression
Hypotheses trgcopy.p P=BaseG
trgcopy.m -˙=distG
trgcopy.i I=ItvG
trgcopy.l L=Line𝒢G
trgcopy.k K=hl𝒢G
trgcopy.g φG𝒢Tarski
trgcopy.a φAP
trgcopy.b φBP
trgcopy.c φCP
trgcopy.d φDP
trgcopy.e φEP
trgcopy.f φFP
trgcopy.1 φ¬ABLCB=C
trgcopy.2 φ¬DELFE=F
trgcopy.3 φA-˙B=D-˙E
Assertion trgcopyeu φ∃!fP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF

Proof

Step Hyp Ref Expression
1 trgcopy.p P=BaseG
2 trgcopy.m -˙=distG
3 trgcopy.i I=ItvG
4 trgcopy.l L=Line𝒢G
5 trgcopy.k K=hl𝒢G
6 trgcopy.g φG𝒢Tarski
7 trgcopy.a φAP
8 trgcopy.b φBP
9 trgcopy.c φCP
10 trgcopy.d φDP
11 trgcopy.e φEP
12 trgcopy.f φFP
13 trgcopy.1 φ¬ABLCB=C
14 trgcopy.2 φ¬DELFE=F
15 trgcopy.3 φA-˙B=D-˙E
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 trgcopy φfP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF
17 6 ad5antr φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFG𝒢Tarski
18 7 ad5antr φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFAP
19 8 ad5antr φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFBP
20 9 ad5antr φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFCP
21 10 ad5antr φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFDP
22 11 ad5antr φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFEP
23 12 ad5antr φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFFP
24 13 ad5antr φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEF¬ABLCB=C
25 14 ad5antr φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEF¬DELFE=F
26 15 ad5antr φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFA-˙B=D-˙E
27 simpl x=ay=bx=a
28 27 eleq1d x=ay=bxPDLEaPDLE
29 simpr x=ay=by=b
30 29 eleq1d x=ay=byPDLEbPDLE
31 28 30 anbi12d x=ay=bxPDLEyPDLEaPDLEbPDLE
32 simpr x=ay=bz=tz=t
33 simpll x=ay=bz=tx=a
34 simplr x=ay=bz=ty=b
35 33 34 oveq12d x=ay=bz=txIy=aIb
36 32 35 eleq12d x=ay=bz=tzxIytaIb
37 36 cbvrexdva x=ay=bzDLEzxIytDLEtaIb
38 31 37 anbi12d x=ay=bxPDLEyPDLEzDLEzxIyaPDLEbPDLEtDLEtaIb
39 38 cbvopabv xy|xPDLEyPDLEzDLEzxIy=ab|aPDLEbPDLEtDLEtaIb
40 simp-5r φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFfP
41 simp-4r φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFkP
42 simpllr φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF
43 42 simpld φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEf”⟩
44 simplr φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩
45 42 simprd φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFfhp𝒢GDLEF
46 simpr φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFkhp𝒢GDLEF
47 1 2 3 4 5 17 18 19 20 21 22 23 24 25 26 39 40 41 43 44 45 46 trgcopyeulem φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFf=k
48 47 anasss φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFf=k
49 48 expl φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFf=k
50 49 anasss φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFf=k
51 50 ralrimivva φfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFf=k
52 eqidd f=kD=D
53 eqidd f=kE=E
54 id f=kf=k
55 52 53 54 s3eqd f=k⟨“DEf”⟩=⟨“DEk”⟩
56 55 breq2d f=k⟨“ABC”⟩𝒢G⟨“DEf”⟩⟨“ABC”⟩𝒢G⟨“DEk”⟩
57 breq1 f=kfhp𝒢GDLEFkhp𝒢GDLEF
58 56 57 anbi12d f=k⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEF
59 58 reu4 ∃!fP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEFfP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEFfPkP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF⟨“ABC”⟩𝒢G⟨“DEk”⟩khp𝒢GDLEFf=k
60 16 51 59 sylanbrc φ∃!fP⟨“ABC”⟩𝒢G⟨“DEf”⟩fhp𝒢GDLEF