Metamath Proof Explorer


Theorem tsms0

Description: The sum of zero is zero. (Contributed by Mario Carneiro, 18-Sep-2015) (Proof shortened by AV, 24-Jul-2019)

Ref Expression
Hypotheses tsms0.z 0˙=0G
tsms0.1 φGCMnd
tsms0.2 φGTopSp
tsms0.a φAV
Assertion tsms0 φ0˙GtsumsxA0˙

Proof

Step Hyp Ref Expression
1 tsms0.z 0˙=0G
2 tsms0.1 φGCMnd
3 tsms0.2 φGTopSp
4 tsms0.a φAV
5 cmnmnd GCMndGMnd
6 2 5 syl φGMnd
7 1 gsumz GMndAVGxA0˙=0˙
8 6 4 7 syl2anc φGxA0˙=0˙
9 eqid BaseG=BaseG
10 9 1 mndidcl GMnd0˙BaseG
11 6 10 syl φ0˙BaseG
12 11 adantr φxA0˙BaseG
13 12 fmpttd φxA0˙:ABaseG
14 fconstmpt A×0˙=xA0˙
15 1 fvexi 0˙V
16 15 a1i φ0˙V
17 4 16 fczfsuppd φfinSupp0˙A×0˙
18 14 17 eqbrtrrid φfinSupp0˙xA0˙
19 9 1 2 3 4 13 18 tsmsid φGxA0˙GtsumsxA0˙
20 8 19 eqeltrrd φ0˙GtsumsxA0˙