Metamath Proof Explorer


Theorem tsmssubm

Description: Evaluate an infinite group sum in a submonoid. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses tsmssubm.a φAV
tsmssubm.1 φGCMnd
tsmssubm.2 φGTopSp
tsmssubm.s φSSubMndG
tsmssubm.f φF:AS
tsmssubm.h H=G𝑠S
Assertion tsmssubm φHtsumsF=GtsumsFS

Proof

Step Hyp Ref Expression
1 tsmssubm.a φAV
2 tsmssubm.1 φGCMnd
3 tsmssubm.2 φGTopSp
4 tsmssubm.s φSSubMndG
5 tsmssubm.f φF:AS
6 tsmssubm.h H=G𝑠S
7 6 submbas SSubMndGS=BaseH
8 4 7 syl φS=BaseH
9 8 eleq2d φxSxBaseH
10 9 anbi1d φxSvTopOpenHxvz𝒫AFiny𝒫AFinzyHFyvxBaseHvTopOpenHxvz𝒫AFiny𝒫AFinzyHFyv
11 elin xGtsumsFSxGtsumsFxS
12 11 biancomi xGtsumsFSxSxGtsumsF
13 eqid BaseG=BaseG
14 13 submss SSubMndGSBaseG
15 4 14 syl φSBaseG
16 15 sselda φxSxBaseG
17 eqid TopOpenG=TopOpenG
18 eqid 𝒫AFin=𝒫AFin
19 5 15 fssd φF:ABaseG
20 13 17 18 2 3 1 19 eltsms φxGtsumsFxBaseGuTopOpenGxuz𝒫AFiny𝒫AFinzyGFyu
21 20 baibd φxBaseGxGtsumsFuTopOpenGxuz𝒫AFiny𝒫AFinzyGFyu
22 16 21 syldan φxSxGtsumsFuTopOpenGxuz𝒫AFiny𝒫AFinzyGFyu
23 vex uV
24 23 inex1 uSV
25 24 a1i φxSuTopOpenGuSV
26 6 17 resstopn TopOpenG𝑡S=TopOpenH
27 26 eleq2i vTopOpenG𝑡SvTopOpenH
28 fvex TopOpenGV
29 elrest TopOpenGVSSubMndGvTopOpenG𝑡SuTopOpenGv=uS
30 28 4 29 sylancr φvTopOpenG𝑡SuTopOpenGv=uS
31 30 adantr φxSvTopOpenG𝑡SuTopOpenGv=uS
32 27 31 bitr3id φxSvTopOpenHuTopOpenGv=uS
33 eleq2 v=uSxvxuS
34 elin xuSxuxS
35 34 rbaib xSxuSxu
36 35 adantl φxSxuSxu
37 33 36 sylan9bbr φxSv=uSxvxu
38 eleq2 v=uSHFyvHFyuS
39 eqid BaseH=BaseH
40 eqid 0H=0H
41 6 submmnd SSubMndGHMnd
42 4 41 syl φHMnd
43 6 subcmn GCMndHMndHCMnd
44 2 42 43 syl2anc φHCMnd
45 44 ad2antrr φxSy𝒫AFinHCMnd
46 elinel2 y𝒫AFinyFin
47 46 adantl φxSy𝒫AFinyFin
48 5 ad2antrr φxSy𝒫AFinF:AS
49 elfpw y𝒫AFinyAyFin
50 49 simplbi y𝒫AFinyA
51 50 adantl φxSy𝒫AFinyA
52 48 51 fssresd φxSy𝒫AFinFy:yS
53 8 ad2antrr φxSy𝒫AFinS=BaseH
54 53 feq3d φxSy𝒫AFinFy:ySFy:yBaseH
55 52 54 mpbid φxSy𝒫AFinFy:yBaseH
56 fvex 0HV
57 56 a1i φxSy𝒫AFin0HV
58 52 47 57 fdmfifsupp φxSy𝒫AFinfinSupp0HFy
59 39 40 45 47 55 58 gsumcl φxSy𝒫AFinHFyBaseH
60 59 53 eleqtrrd φxSy𝒫AFinHFyS
61 elin HFyuSHFyuHFyS
62 61 rbaib HFySHFyuSHFyu
63 60 62 syl φxSy𝒫AFinHFyuSHFyu
64 4 ad2antrr φxSy𝒫AFinSSubMndG
65 47 64 52 6 gsumsubm φxSy𝒫AFinGFy=HFy
66 65 eleq1d φxSy𝒫AFinGFyuHFyu
67 63 66 bitr4d φxSy𝒫AFinHFyuSGFyu
68 38 67 sylan9bbr φxSy𝒫AFinv=uSHFyvGFyu
69 68 an32s φxSv=uSy𝒫AFinHFyvGFyu
70 69 imbi2d φxSv=uSy𝒫AFinzyHFyvzyGFyu
71 70 ralbidva φxSv=uSy𝒫AFinzyHFyvy𝒫AFinzyGFyu
72 71 rexbidv φxSv=uSz𝒫AFiny𝒫AFinzyHFyvz𝒫AFiny𝒫AFinzyGFyu
73 37 72 imbi12d φxSv=uSxvz𝒫AFiny𝒫AFinzyHFyvxuz𝒫AFiny𝒫AFinzyGFyu
74 25 32 73 ralxfr2d φxSvTopOpenHxvz𝒫AFiny𝒫AFinzyHFyvuTopOpenGxuz𝒫AFiny𝒫AFinzyGFyu
75 22 74 bitr4d φxSxGtsumsFvTopOpenHxvz𝒫AFiny𝒫AFinzyHFyv
76 75 pm5.32da φxSxGtsumsFxSvTopOpenHxvz𝒫AFiny𝒫AFinzyHFyv
77 12 76 bitrid φxGtsumsFSxSvTopOpenHxvz𝒫AFiny𝒫AFinzyHFyv
78 eqid TopOpenH=TopOpenH
79 resstps GTopSpSSubMndGG𝑠STopSp
80 3 4 79 syl2anc φG𝑠STopSp
81 6 80 eqeltrid φHTopSp
82 8 feq3d φF:ASF:ABaseH
83 5 82 mpbid φF:ABaseH
84 39 78 18 44 81 1 83 eltsms φxHtsumsFxBaseHvTopOpenHxvz𝒫AFiny𝒫AFinzyHFyv
85 10 77 84 3bitr4rd φxHtsumsFxGtsumsFS
86 85 eqrdv φHtsumsF=GtsumsFS