Metamath Proof Explorer


Theorem tsmsid

Description: If a sum is finite, the usual sum is always a limit point of the topological sum (although it may not be the only limit point). (Contributed by Mario Carneiro, 2-Sep-2015) (Revised by AV, 24-Jul-2019)

Ref Expression
Hypotheses tsmsid.b B=BaseG
tsmsid.z 0˙=0G
tsmsid.1 φGCMnd
tsmsid.2 φGTopSp
tsmsid.a φAV
tsmsid.f φF:AB
tsmsid.w φfinSupp0˙F
Assertion tsmsid φGFGtsumsF

Proof

Step Hyp Ref Expression
1 tsmsid.b B=BaseG
2 tsmsid.z 0˙=0G
3 tsmsid.1 φGCMnd
4 tsmsid.2 φGTopSp
5 tsmsid.a φAV
6 tsmsid.f φF:AB
7 tsmsid.w φfinSupp0˙F
8 eqid TopOpenG=TopOpenG
9 1 8 istps GTopSpTopOpenGTopOnB
10 4 9 sylib φTopOpenGTopOnB
11 topontop TopOpenGTopOnBTopOpenGTop
12 10 11 syl φTopOpenGTop
13 1 2 3 5 6 7 gsumcl φGFB
14 13 snssd φGFB
15 toponuni TopOpenGTopOnBB=TopOpenG
16 10 15 syl φB=TopOpenG
17 14 16 sseqtrd φGFTopOpenG
18 eqid TopOpenG=TopOpenG
19 18 sscls TopOpenGTopGFTopOpenGGFclsTopOpenGGF
20 12 17 19 syl2anc φGFclsTopOpenGGF
21 ovex GFV
22 21 snss GFclsTopOpenGGFGFclsTopOpenGGF
23 20 22 sylibr φGFclsTopOpenGGF
24 1 2 3 4 5 6 7 8 tsmsgsum φGtsumsF=clsTopOpenGGF
25 23 24 eleqtrrd φGFGtsumsF