Metamath Proof Explorer


Theorem tsmsgsum

Description: The convergent points of a finite topological group sum are the closure of the finite group sum operation. (Contributed by Mario Carneiro, 19-Sep-2015) (Revised by AV, 24-Jul-2019)

Ref Expression
Hypotheses tsmsid.b B=BaseG
tsmsid.z 0˙=0G
tsmsid.1 φGCMnd
tsmsid.2 φGTopSp
tsmsid.a φAV
tsmsid.f φF:AB
tsmsid.w φfinSupp0˙F
tsmsgsum.j J=TopOpenG
Assertion tsmsgsum φGtsumsF=clsJGF

Proof

Step Hyp Ref Expression
1 tsmsid.b B=BaseG
2 tsmsid.z 0˙=0G
3 tsmsid.1 φGCMnd
4 tsmsid.2 φGTopSp
5 tsmsid.a φAV
6 tsmsid.f φF:AB
7 tsmsid.w φfinSupp0˙F
8 tsmsgsum.j J=TopOpenG
9 1 8 istps GTopSpJTopOnB
10 4 9 sylib φJTopOnB
11 toponuni JTopOnBB=J
12 10 11 syl φB=J
13 12 eleq2d φxBxJ
14 elfpw y𝒫AFinyAyFin
15 14 simplbi y𝒫AFinyA
16 15 adantl φuJy𝒫AFinyA
17 suppssdm Fsupp0˙domF
18 17 6 fssdm φFsupp0˙A
19 18 ad2antrr φuJy𝒫AFinFsupp0˙A
20 16 19 unssd φuJy𝒫AFinysupp0˙FA
21 elinel2 y𝒫AFinyFin
22 21 adantl φuJy𝒫AFinyFin
23 7 ad2antrr φuJy𝒫AFinfinSupp0˙F
24 23 fsuppimpd φuJy𝒫AFinFsupp0˙Fin
25 unfi yFinFsupp0˙Finysupp0˙FFin
26 22 24 25 syl2anc φuJy𝒫AFinysupp0˙FFin
27 elfpw ysupp0˙F𝒫AFinysupp0˙FAysupp0˙FFin
28 20 26 27 sylanbrc φuJy𝒫AFinysupp0˙F𝒫AFin
29 ssun1 yysupp0˙F
30 id z=ysupp0˙Fz=ysupp0˙F
31 29 30 sseqtrrid z=ysupp0˙Fyz
32 pm5.5 yzyzGFzuGFzu
33 31 32 syl z=ysupp0˙FyzGFzuGFzu
34 reseq2 z=ysupp0˙FFz=Fysupp0˙F
35 34 oveq2d z=ysupp0˙FGFz=GFysupp0˙F
36 35 eleq1d z=ysupp0˙FGFzuGFysupp0˙Fu
37 33 36 bitrd z=ysupp0˙FyzGFzuGFysupp0˙Fu
38 37 rspcv ysupp0˙F𝒫AFinz𝒫AFinyzGFzuGFysupp0˙Fu
39 28 38 syl φuJy𝒫AFinz𝒫AFinyzGFzuGFysupp0˙Fu
40 3 ad2antrr φuJy𝒫AFinGCMnd
41 5 ad2antrr φuJy𝒫AFinAV
42 6 ad2antrr φuJy𝒫AFinF:AB
43 ssun2 Fsupp0˙ysupp0˙F
44 43 a1i φuJy𝒫AFinFsupp0˙ysupp0˙F
45 1 2 40 41 42 44 23 gsumres φuJy𝒫AFinGFysupp0˙F=GF
46 45 eleq1d φuJy𝒫AFinGFysupp0˙FuGFu
47 39 46 sylibd φuJy𝒫AFinz𝒫AFinyzGFzuGFu
48 47 rexlimdva φuJy𝒫AFinz𝒫AFinyzGFzuGFu
49 7 fsuppimpd φFsupp0˙Fin
50 elfpw Fsupp0˙𝒫AFinFsupp0˙AFsupp0˙Fin
51 18 49 50 sylanbrc φFsupp0˙𝒫AFin
52 3 ad2antrr φuJGFuz𝒫AFinFsupp0˙zGCMnd
53 5 ad2antrr φuJGFuz𝒫AFinFsupp0˙zAV
54 6 ad2antrr φuJGFuz𝒫AFinFsupp0˙zF:AB
55 simprr φuJGFuz𝒫AFinFsupp0˙zFsupp0˙z
56 7 ad2antrr φuJGFuz𝒫AFinFsupp0˙zfinSupp0˙F
57 1 2 52 53 54 55 56 gsumres φuJGFuz𝒫AFinFsupp0˙zGFz=GF
58 simplrr φuJGFuz𝒫AFinFsupp0˙zGFu
59 57 58 eqeltrd φuJGFuz𝒫AFinFsupp0˙zGFzu
60 59 expr φuJGFuz𝒫AFinFsupp0˙zGFzu
61 60 ralrimiva φuJGFuz𝒫AFinFsupp0˙zGFzu
62 sseq1 y=Fsupp0˙yzFsupp0˙z
63 62 rspceaimv Fsupp0˙𝒫AFinz𝒫AFinFsupp0˙zGFzuy𝒫AFinz𝒫AFinyzGFzu
64 51 61 63 syl2an2r φuJGFuy𝒫AFinz𝒫AFinyzGFzu
65 64 expr φuJGFuy𝒫AFinz𝒫AFinyzGFzu
66 48 65 impbid φuJy𝒫AFinz𝒫AFinyzGFzuGFu
67 disjsn uGF=¬GFu
68 67 necon2abii GFuuGF
69 66 68 bitrdi φuJy𝒫AFinz𝒫AFinyzGFzuuGF
70 69 imbi2d φuJxuy𝒫AFinz𝒫AFinyzGFzuxuuGF
71 70 ralbidva φuJxuy𝒫AFinz𝒫AFinyzGFzuuJxuuGF
72 13 71 anbi12d φxBuJxuy𝒫AFinz𝒫AFinyzGFzuxJuJxuuGF
73 eqid 𝒫AFin=𝒫AFin
74 1 8 73 3 4 5 6 eltsms φxGtsumsFxBuJxuy𝒫AFinz𝒫AFinyzGFzu
75 topontop JTopOnBJTop
76 10 75 syl φJTop
77 1 2 3 5 6 7 gsumcl φGFB
78 77 snssd φGFB
79 78 12 sseqtrd φGFJ
80 eqid J=J
81 80 elcls2 JTopGFJxclsJGFxJuJxuuGF
82 76 79 81 syl2anc φxclsJGFxJuJxuuGF
83 72 74 82 3bitr4d φxGtsumsFxclsJGF
84 83 eqrdv φGtsumsF=clsJGF